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Does your ontology make
a (sense) difference?
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Abstract. The paper defines three logical criteria for semantic adequacy of an ap-
plied ontology. All criteria are based on the idea to the effect that when an ontol-
ogy construed as a formal theory allows for swapping some items in its vocabu-
lary, then it does not sufficiently differentiate between the meanings of these items
and, consequently, the semantic aspect of this vocabulary cannot be claimed to be
sufficiently characterised. Besides providing the formal definitions of those criteria
and proving some simple correlations therebetween I present the empirical results
of their implementation.
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Applied formal ontology seems to be one of those peculiar disciplines that attempt
to apply the methods of logic to solve the real-world problems of engineering. Therefore,
if it is to live up to this expectation, it cannot be satisfied with producing complex and el-
egant abstract structures, but it needs to produce such structures for the sake of some ap-
plication. Browsing through the mainstream papers in applied ontology, e.g., consulting
[7] where eight main types of such applications are listed, one may get to the conclusion
that one of the primary tasks of any applied formal ontology is to determine the semantic
roles of its terminology, in particular to define the meanings of the terms, predicates, and
(possibly) other symbols that occur therein. Since this task is usually interpreted as being
attainable by means of determining classes of (semantic) models for those ontologies,
what we can at best expect to achieve is partial clarifications and not adequate defini-
tions. For example, the well-known model-theoretic limitations of first-order logic, like
those described by Lowenheim-Skolem theorem, make it impossible to build a first-order
theory whose class of models includes only intended models.

Even the modest task of partial semantic clarification may pose a challenge. In this
paper I would like to define a package of three logical criteria that a formal applied on-
tology needs to satisfy if it is to achieve this task. Each criterion in this package is to be
interpreted as a necessary condition: any ontology that does not meet it does not satisfac-
torily characterise its terminology. Since they can be ordered with respect to their logical
strength, i.e., with respect to sets of ontologies that meet them, my recommendation can
be interpreted as defining three grades of semantic indeterminacy without any further
claim as to which of these grades defines a minimal threshold that a formal theory must
reach to become an applied ontology worth of its name.

1. Insights and intuitions

Assume that a “toy” formal ontology O consists of just one axiom:
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Vx[A(x) VB(x) = C(x)] ()

From the ontological point of view one can say that all this ontology achieves is that the
category represented by predicate C is exhaustively divided into category (represented
by) A and category (represented by) B. Obviously, O adequately defines neither of these
predicates — C may represent the category of numbers or the category of fatty acids while
A and B may represent, respectively, even and odd numbers, or, unsaturated and satu-
rated fatty acids. This feature however does not disqualifies £ as a means to semantic
clarification. The more pertinent question is whether £ even partially characterises the
meaning of its predicates or whether it characterises those meanings as specifically as
possible. I claim that it does not because it does not differentiate between its predicates,
i.e., it does not formally characterise them as separate categories. Since neither of the
following formulae is a theorem of O;:

Vx[A(x) = C(x)] )
Vx[A(x) = B(x)] 3)
Vx[B(x) = C(x)] 4)

one is justified in believing that the three predicates have different meanings, but this
difference is not encoded in the ontology itself.

First, you can swap A and B and ; will not change at all, i.e., no new theorem will
be added and no old theorem will be removed therefrom. Thus, as far as 9 is concerned
A can be identical to B, i.e., there is no axiom in this ontology that states to the contrary.

Secondly, if you swap A and C, you will get a different ontology, say £,, that con-
tains the following axiom:

Vx[C(x) VB(x) = A(x)] 5)

Notice however that although 5 does not follow from 1, it is not inconsistent therewith
either, i.e., you can add the former to ontology ©; without making it inconsistent. Again,
as far as £ is concerned A can be identical to C, i.e., there is no axiom in this ontology
that states to the contrary. Metaphorically speaking, this “identity” is much weaker than
the previous one since it is based on the consistency of swapping. In other words, one
may say that the level of indeterminacy of the semantic difference between A and C (in
this case) is lower than the level with respect to A and B (from the first case).
Thirdly, imagine now that we add axiom 6 to ©; and obtain ontology 3:

—3x [A(x) AB(x)] (6)

You may still swap A and B within O3 and 5 is still consistent with 3. However, when
you add 5 to this extended ontology, you will get the following consequence:

—3x B(x) (N

So although set {1, 6, 5} of axioms is not inconsistent, one of its consequences has it
that the extension of predicate/category B is empty. Since 7 does not follow from {1,
6}, one can assume that ontology 93 does not characterise B as a null category (e.g.,
as owl:Nothing). In a sense one may claim that 3 does not make room for 5 - not
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on the pain of inconsistency but because 5 would distort the ontological status of one of
its categories. Therefore, it is not the case now that as far as 3 is concerned A can be
identical to C. From the intuitive point of view, this kind of semantic (in)determinacy can
be located “between” the first and the second kind.

In sum, the three grades of semantic indeterminacy of an applied ontology can be
intuitively characterised as below:

1. after swapping some of its terminology, the new axioms that result from swapping
do not make the ontology inconsistent;

2. after swapping some of its terminology, the new axioms that result from swapping
“do not add” to this ontology any empty categories, i.e., do not add any fact to the
effect that a category from this ontology is empty;

3. after swapping some of its terminology, the ontology (construed as a formal the-
ory) does not change at all.

2. Definitions

Let Lang be a first-order language whose signature contains set *Pred of predicates. If
O € Pred, then ar(S) gives the arity of predicate §. The (meta-logical) symbol “8(7)”
is to denote an atomic formula of £ang that is build from predicate § and its arguments
¥. Similarly, “vy 6(7)” and “3y (7)” are, respectively, the full universal and existential
closures of “8(7)”. The (meta-logical) function symbol “pred” will be used to find all
predicates that occur in formulae from a given subset of Lang.

Now if A C Pred, “o(A)” will denote a permutation on A, i.e., 0 is a bijection from
A onto A. Suppose that ¢ € Lang and that @ # A C Pred. Suppose also that A is arity
homogenous, i.e., if 81, 8 € A, then at(6;) = ar(8;). If 6(A) is a non-trivial permutation
on A, i.e., if ¢ is not the identity relation in A, then swa Po(A) (¢) is an element of Lang
that satisfies the following conditions:

1. if ¢ = 6(7) and & € A, then swapg(x)(9) = 6'(7),
where 6’ = 6(6);

2.if ¢ = 6(7) and & ¢ A, then swapg ) (¢) = 6(7);

- if ¢ = =y, then swapg(4) () = —swapg(a) (¥);

. if ¢ =Va y, then swapg ) (9) = Va swap(,(A)(y/).1

&~ W

Note that swapg,)(¢) is defined only if [A] > 1 because otherwise 6(A) would be the
identity in A.

For the sake of parsimony I will use the same symbol for a set of swapped formulae,
ie.,

swapg(a) (@) = {y: 39 € Dy =swaps(s)(9)}. (®)

Any language £ang may be associated with a number consequence operations,
which can be defined either semantically or proof-theoretically or in some other way (cf.
[12]). Since the majority of existing formal ontologies are based on classical logic, € is

I'The conditions for other connectives are inferable from those given above.
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here fixed as the consequence operation of first-order classical logic for language Lang.
Consequently, I assume that € has the following properties:

X Cex) ©)

XCY = eX)Cey) (10)

¢(€(X)) € €(X) (1)

¢(0) contains all first-order tautologies in £ang (12)
¢ €C({y1,y2,...,Yu}) =

=TYIAY A Ay, = @7 € (D) (13)

A formal ontology £ will be understood here as a couple < Lang, 2 >, where
0 # Ar C Lang is a (finite) set of axioms (of this ontology). In what follows I will
consider only consistent ontologies, i.e., those for which it is the case that

€(r) # Lang (14)

A formal ontology < Lang,2r > will be called empty if for every 6 € pred(r),
376(7) € (),

I will say that set A C Bred of predicates is swappable with respect to formal ontol-
ogy O =< Lang,Axr > if A C pred () and for any two predicates 81,8, € A,

"Va[d (o) = &(a)]T ¢ €(Ar).

Now I will define the three grades of semantic indeterminacy, which I informally
described in the previous section.

Definition 1. A formal ontology O =< Lang, 2z > exhibits the first grade of semantic
indeterminacy with respect to predicates from set A if and only if A is swappable with
respect to O and for every mapping o it holds that

€(ArUswapga) (Ar)) # Lang.

Definition 2. A formal ontology O =< Lang,2Ar > exhibits the second grade of semantic
indeterminacy with respect to predicates from set A if and only if A is swappable with
respect to O and for every mapping ¢ and for every formula ¢ ="—-3y 6(¥)" from
Lang it holds that

¢ ¢ €(Ar) = ¢ ¢ C(ArUswapga) (2Ar))-

Definition 3. A formal ontology D =< Lang, 2y > exhibits the third grade of semantic
indeterminacy with respect to predicates from set A if and only if A is swappable with
respect to O and for every mapping o it holds that

swapg () (Ar) € C(Ax).

I presuppose that for each definition the respective “indeterminacy” condition is
non-vacuously satisfied, i.e., for each of them there exists a mapping ¢ that satisfies the
respective condition. Consequently, a formal ontology exhibits the first (resp. second,
third) grade of semantic indeterminacy with respect to set A only if |A| > 1.
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3. Observations

It should be obvious that the three “toy” ontologies mentioned in section 1 exhibits the
following grades of semantic indeterminacy:

1. O exhibits all three grades with respect to {A, B}, but only the first and second
grade with respect to {A,C};

2. 9, exhibits all three grades with respect to {B,C}, but only the first and second
grade with respect to {A,B};

3. 93 exhibits all three grades with respect to {A,B}, but only the first grade with
respect to {A, C}.

Now I will show the the order of the three grades of semantic indeterminacy can be
established formally.

Fact 1. If formal ontology O =< Lang,Ax > exhibits the third grade of semantic inde-
terminacy with respect to set A, then it also exhibits the second grade (with respect to
A).

Proof. Suppose that O exhibits the third grade of semantic indeterminacy. Consequently,
for every swapg ) (2r) it holds that

swapga) (2r) € €(2Ar) Q)

Now if O does not exhibit the second grade of semantic indeterminacy, it means that
there is a formula ¢ € £ang such that

¢ ¢ €(Ar)

and

¢ € C(ArUswapgy) (Ar))-

But this latter consequence is inconsistent with the former given 1 and the following
property of consequence operations:

X CeY) = C(XUY) C &(Y).
O

Fact 2. If formal ontology O =< Lang,Ar > exhibits the second grade of semantic
indeterminacy with respect to set A, then it also exhibits the first grade (with respect to
A).

Proof. Suppose that O exhibits the second grade of semantic indeterminacy. Conse-
quently, for every swapga)(2r) and for every ¢ ="=3y &(¥)" from Lang it holds
that

¢ € E(ArUswapg ) (Ar)) — ¢ € C(Ar) )
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Now if O does not exhibit the first grade of semantic indeterminacy, it means that

¢(ArUswapg(a) (Ar)) = Lang (69)

Pick up now predicate § for which "—=36(7) ¢ €(r) - you can always find it as O is
not empty because of fact 6 below. Since =38 (¥) " € Lang, I together with { imply an
inconsistency. O

Fact 3. If formal ontology O =< Lang,x > exhibits the third grade of semantic in-
determinacy with respect to set A, then it also exhibits the first grade (with respect to
A).

Proof. One can give a proof of this fact that is independent from facts 1 and 2. Sup-
pose that © exhibits the third grade of semantic indeterminacy. Consequently, for every
swap(a) () it holds that

swapg(a) (2Ar) € €(Ar) h

Now if O does not exhibit the first grade of semantic indeterminacy, it means that

C(ArUswapga) (Ar)) = Lang (69)

On the basis of the principle mentioned in the proof of fact 1 it follows that Lang =
C(Ar Uswapg () (Ar)) € €(Ar). But this consequence is inconsistent with restriction
14. O

The particular observations made in the beginning of this section show that the op-
posite inclusions are not true. Thus, I will say that formal ontology © exhibits the proper
first grade of semantic indeterminacy (with respect to A) if O exhibits the first, but not the
second grade of semantic indeterminacy (with respect to A). Similarly, one may speak
about proper second grade.

Now I will show that semantic indeterminacy is inheritable from “bigger” to
“smaller” ontologies (fact 4) and from “bigger” to “smaller” sets of predicates (fact 5).

Fact 4. If formal ontology O =< Lang,Ax > exhibits the first (resp. second, third) grade
of semantic indeterminacy with respect to set A and Ay’ C Uy, then it also exhibits the
same grade with respect to AN pred(2Ar') provided that |ANpred(2Ar')| > 1.

Proof. Assume that 9 exhibits the first (resp. second, third) grade of semantic inde-
terminacy with respect to set A and 2(r’ C 2(r. Now pick up such permutation ¢ that
swapg(a) (Ar) exists and such that the restriction ¢’ of & to set AN pred(Ax’) is a non-
trivial permutation of the latter set. Since AN pred(2Ar’) is not a singleton, one can always
find such a permutation. It should be obvious that

SWap g (anpreo(y’)) (AE) C swapga) (Ar), )

Then one can easily establish fact 4 by inspection of the above definitions of grades
given property 10 of the consequence operation. O
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Fact 5. Ifformal ontology O =< Lang,r > exhibits the first (resp. second, third) grade
of semantic indeterminacy with respect to set A and N' C A, then it also exhibits the same
grade with respect to A’ provided that |A'] > 1.

Proof. First note that if A’ C A and |A’| > 1, then for each permutation 6’ (A’) there exists
5)

a permutation o (A) such that 6'(A") = o(A’) and for each § € A\ A’ 6(8) = §. Thus,
swapg/(a) (Ar) C swapg(a) (2Ar) ©)
As in the previous proof, this inclusion implies fact 5. O

Even if your ontology exhibits some grade of semantic indeterminacy as defined
above, there is still some hope for you and your ontological artefact as you can always re-
move any type of indeterminacy by extending this ontology by additional axioms. How-
ever, in general only the first grade of semantic indeterminacy is easily removable - see
fact 7 below - and the second and third grades may require substantial changes in your
ontology - see facts 8 and 9. Oddly enough, all empty ontologies are free of any kind of
indeterminacy.

Fact 6. No empty ontology exhibits the first (resp. second, third) type of semantic inde-
terminacy with respect to any set A of predicates.

Proof. The rationale for this fact is rather trivial. If formal ontology < Lang, 2z > is
empty, then for any predicates 81,8, € pred(r), it holds that "Va [ (a) = & ()] €
¢(Ar), which makes them unswappable. O

Fact 7. Every formal ontology that exhibits the proper first grade of semantic indetermi-
nacy can be conservatively extended to a formal ontology that does not exhibit the first
grade, i.e., for every formal ontology < Lang,2lx > that exhibits the proper first grade of
semantic indeterminacy with respect to set A, there exists formal ontology < Lang, Az’ >
(Ax C Ax’) that does not exhibit the first grade of semantic indeterminacy with respect to
A and such that pred(Ax") = pred(Ar).

Proof. (The proof is similar to the standard proof of Lindenbaum’s Lemma - [2, p.
26]). Assume that © =< Lang,Ar > exhibits the first grade of semantic indetermi-
nacy with respect to set A. This means that there is at least one mapping ¢ such
that €(2Ar Uswapga)(2r)) # Lang. Moreover, the number of such mappings is finite,
say is equal to n, and the set of formulae swa Po,-(A)(Q[P) that mapping o; determines
is also finite, i.e., is equal to |r|. One can order all such formulae in a sequence
01,02, ..., ¢, where k £ nx |2(z|, on the basis of some syntactic feature of theirs. Then,
following the standard proof of Lindenbaum’s lemma, one can define a finite sequence
Arg, Axy, . . ., Ar, extension of Ay as follows:

A, ., 2 Ar,, U{ ¢, '} if Ax,, U {" ¢, '} is consistent;
m Az, otherwise.
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Consider now 2y,. It is a finite and consistent set (with respect to ¢). Moreover,
pred(Ar;) = pred(Ar) because A C pred(2Az), so for each mapping o,

pred(swapg(a)(Ar)) C pred(Ar). Thus, consider formal ontology < Lang, Ar; >. Since
£ exhibits the proper first grade of semantic indeterminacy, 2y C 2(x;. Then it is easy to
observe that it does not exhibit the first grade of semantic indeterminacy because of our
way of construction of 2(y; and because of 12 and 13. O

Fact 8. For every formal ontology < Lang,dx > that exhibits the second grade of se-
mantic indeterminacy with respect to set A, there exists a formal ontology < Lang, 2z’ >
(2Ax C Ax') that does not exhibit the second grade of semantic indeterminacy with respect
to A provided that |Pred \ pred(™Ar)| > 1.

Proof. Consider two formulae:

VS (V) = &1 (V) A ~&(P)] (1)

V18" (7) = 82(9) A —81(P)] ®

where 8,8, € A and both predicates 8’ and 8" (8’ # 8”) belongs to Pred \ pred(Ar).
claim that it not the case that both

T-3768'(7)" € ¢(ArU{T}) )
and
"3y 8"(¥)" € €U {#}) (%)

Assume otherwise. Then, because of x, we would get that "VY[8; (7) — &(7)]" € €(r)
and, because of x, "VY[8,(¥) — 61 (¥)] " € €(Ar). But these two consequences contradict
an assumption of the proof to the effect that d; and 8, are swappable.

Suppose that "=37 &'(7) 7 ¢ €(RAr U {1}). Let 2’ £ Ar U {+}. Since &’ ¢ pred(Ax),
2z’ is consistent with respect to €. That < Lang, 2’ > does not exhibit the second grade
of semantic indeterminacy follows from

T3y 8'(7)" € C(W' Uswapg(a) (Ar')) ®

for any mapping ¢ such that 6(8;) = & and 6(8,) = ;. Then €(24t’ Uswapa) (Ar'))
contains also VY[8'(¥) = 8,(7) A —61(¥)] (besides T). Consequently, § holds. A similar
argument can be made for the case when =3y 8" (7)™ ¢ €(ArU{$}). O

Notice that in general one cannot conservatively remove the second grade of seman-
tic indeterminacy. That is to say, it is not the case that any formal ontology that exhibits
the second grade of semantic indeterminacy with respect to set A can be conservatively
extended to a formal ontology that does not exhibit it with respect to the same set. Con-
sider for instance ontology 4 whose set 2(x, of axioms consists of just two formulae:

3x AGx) (15)
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Ix B(x) (16)

It is easy to see that 4 exhibits the second (and also the third, for that matter) grade
of semantic indeterminacy with respect to {A,B}. Suppose that we conservatively ex-
tended Ay, with some additional axioms and arrive at an ontology whose set of ax-
ioms is 2Ar}. The term “conservatively” means that pred(2(xry) = {A,B}. I claim that
since 2y, is consistent, there exists no formula =37 (7)™ such that it belongs to
¢(Ar) Uswa Po({AB}) (2Uxy)) for any mapping o on set {A,B}. The reason is if there did,
then & would be an element of pred(Axy Uswaps(a g} (Ar})) = pred(2Ary) = {A,B} and
this is impossible due to the consistency of 2lxy. Finally, definition 2 implies then that the
extended ontology based on 2ly)y exhibits the second grade of semantic indeterminacy.

Fact 9. For every formal ontology < Lang,20x > that exhibits the third grade of semantic
indeterminacy with respect to set A, there exists a formal ontology < Lang,Ax’ > (A C
Ar’) that does not exhibit the third grade of semantic indeterminacy with respect to A
provided that Pred \ pred(Ax) # 0.

Proof. To show fact 9 one can appropriately accommodate the previous proof and obtain
a simpler version thereof. We can now consider only one formula

VY8’ () = 81(7) A—82(7)] Q)
and show that
-3y &' (P) " ¢ C(ArU{t}) *)

Assume otherwise. If formula "—37 &'(7)™ belonged to €(Ar U {+}), this would imply
not only that "V¥[8; (¥) — 6:(7)]" € €(RAr) but also that "V¥[& (7) — 6;(¥)]" € €(Ax)
because this time our ontology exhibits the third grade of semantic indeterminacy. The
rest of the proof is identical to the previous case. O

As before one cannot conservatively remove the third grade of semantic indetermi-
nacy. Although one can remove this type of indeterminacy from O4 by adding to it, say,
axiom 17

Vx [A(x) = B(x)], (I7)

one cannot remove it conservatively from ontology s based on axioms 18 — 21.

Ix [A(x) AB(x)] (18)
Ix [A(x) A—=B(x)] (19)
Jx [-A(x) AB(x)] (20)

Ix [-A(x) A —=B(x)] 21
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4. Discussion

As the reader may expect the phenomena of semantic indeterminacy are not rare in the
domain of existing applied ontologies. In particular, if an ontology boils down to a simple
taxonomy, i.e., if it contains only formulae of the form V¥[8, (¥) — 62(7)], then

1. it exhibits the second grade of semantic indeterminacy with respect to the set of all
of its predicates;

2. it exhibits the third grade of semantic indeterminacy with respect to any set of
those leaf nodes in the subsumption hierarchy that are “subsumption siblings”,
e.g., like set {A, B} for ontology 9 in section 1.

However, the simple ontological widget in the form of disjointness conditions for such
siblings may remove some semantic indeterminacies of the type mentioned in case 1,
e.g., like the indeterminacy between predicates A and B from ontology O in section
1. On the other hand, in order to remove the third grade of indeterminacy mentioned
in case 2 one usually need to provide a non-conservative extension of the taxonomy. It
is a practical experience of the author that this extension is usually realised by adding
a number of relations to the ontology in question and binding the “swappable sibling”
categories thereby.

These observations may provide a robust independent justification for the conviction
of many ontologists to the effect that as far as the goals of applied ontology are concerned
a simple taxonomy does not sufficiently characterise its categories - cf. [9,7,5,10,4]. This
conviction is sometimes rendered as the slogan “ontology is not a taxonomy”. Alas the
number of actual ontologies that are just taxonomies is substantial.

If we restrict the domain of formal ontologies to those that are rendered in OWL,
then it seems that to find out whether a given formal ontology exhibits some grade of
semantic indeterminacy is a relatively easy task. In particular, we do not need any new
algorithms or software tools besides those available. From the theoretical point of view
it suffices to recollect the fact that the question of inferrability boils down to the question
of consistency:

pelX)=C(XU{"—¢™}) = Lang (22)

Consequently, all one needs to do in order to establish whether a given ontology exhibits
some grade of semantic indeterminacy is to use a programming framework for OWL
(e.g., Jena) coupled with an API of an OWL reasoner (e.g., Pellet). The latter will re-
alise the required swappings and the former will check the consistency of the resulting
ontologies.

2More precisely speaking, one can say that formal ontology < Lang,2g > is (at least) a taxonomy if
[pred(Ar)| > 1 and there exists exactly one predicate & € pred(2Ar) such that for each other predicate
6 € pred(Ar) it holds that "V¥[8(7) — do(¥)]™ € €(Ar). Similarly, formal ontology < Lang,Ar > is (at
most) a taxonomy if for every axiom ¢ € 2y, there exists conjunction Y; Ay A--- Ay, (n > 0) such that
@ "9 =y Ay A Ay, € C(0); (b) each yy is equal to V¥ [, () — O, (V)]s (c) and pred({¢}) =
{513761b78237"‘78nb}'
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5. Implementation

Table 1 in page 12 summarises the results of a number of tests in which I investigated
whether a specific applied ontology contains categories that exhibit some type of seman-
tic indeterminacy. For obvious reasons I focused on a sample of the OWL DL ontologies
that are available in the public domain - even if a given ontology has more expressive
versions, I picked up its OWL DL version. Using the JENA framework (version 2.7.0)
together with the Pellet reasoner (version 2.3.0) I implemented a simple “generate-and-
test” algorithm to identify couples of named classes (instances of owl:Class) within
these ontologies that are indiscernible as far as the axioms of those ontologies are con-
cerned.? In other words, I investigated the grades of semantic indeterminacy of the on-
tologies in question with respect to doubletons of their (unary) categories that are ren-
dered as named instances of owl:Class. Since in most cases it is not possible to list
all such couples with respect to which these ontologies exhibit semantic indeterminacy,
table 1 specifies only

1. examples of semantically indiscernible couples of categories from the respective
ontologies;

(a) each column on the right-hand side part of the table specifies all couples
with respect to which a given ontology exhibits the proper first (resp. second,
third) grade of semantic indeterminacy;

(b) the names of categories are their local names (i.e. relative URIs);

2. ratio of such couples to all couples that one can form by means of all classes from
a given ontology;

(a) each ratio is rounded to four decimal places.

The results concerning the third grade of semantic indeterminacy require a dis-
claimer. Since most of the OWL ontologies use the http://www.w3.o0rg/2000/01/
rdf-schema#label annotation property to name its categories, these categories become
ipso facto discernible because of those annotations. Thus, in order to implement the idea
behind the notion of semantic indeterminacy I disregarded all annotations for the on-
tologies in question. As a result, I interpret them as comments that do not belong to the
logical content of a given formal ontology.

3The lack of space makes it impossible to specify the details of this algorithm - the interested reader may
find its JAVA implementation together with the log files for the aforementioned tests on www.13g.pl. The logs
specify all semantically indiscernible categories of the ontologies at stake.



Ontology 1st grade 2nd grade 3rd grade
Example of indiscernible couple | Ratio | Example of indiscernible couple | Ratio Example of indiscernible couple Ratio
acronym: BFO Occurrent, Quality 0.9663 - 0 Role, Disposition 0.0337
URIL: http://www.ifomis.org/bfo/owl ProcessualContext, Process
version: 1.1.1 OneDimensionalRegion, ThreeDimensionalRegion
acronym: CIDOC CRM E35_Title, E66_Formation 0.629 E38_Image, E56_Language 0.3707 E47_Spatial_Coordinates, E48_Place_Name 0.0003
URI: http://erlangen-crm.org/110404/
version: 502
acronym: DOLCE-Lite physical_endurant, abstract_region | 0.8934 accomplishment, state 0.1006 set, proposition 0.006
URI: http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl accomplishment, achievement
version: 77 process, state
dependent-place, relevant-part
acronym: GFO Symbol_structure, Presential 0.3457 Social_role, Chronoid 0.1808 Discrete_process, State 0.0042
URI: http://www.onto-med.de/ontologies/gfo-basic.owl Continuous_process, Discrete_process
version: 1.0 (1.13) Continuous_process, State
acronym: 1SO 15926 Classification, PossibleIndividual |0.5577 | Language, IntendedRoleAndDomain | 0.4412 SpatialLocation, Stream 0.0011
URI: |http://rds.posccaesar.org/2008/02/0WL/IS0-15926-2_2003 ‘WholeLifeIndividual, Actuallndividual
version: 2008-02-21 PeriodInTime, Actuallndividual
Description, Identification
acronym: PROTON KM - 0 any couple 1 - 0
URI: http://proton.semanticweb.org/2005/04/protonkm of PROTON KM
version: 0.1 categories

Table 1. Semantic indeterminacy of formal applied ontologies
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6. Related Work

The research topic that seems to be the most similar to the problem of semantic inde-
terminacy concerns ontology comparison (see [6]). Currently, the mainstream research
there focuses on formal ontologies expressed in some weak description logic language,
e.g. from the so-called DL-Lite family. Assume that you are to compare two “unpopu-
lated” DL-Lite ontologies £ and ©', i.e., two sets of TBoxes/concept inclusions. Sup-
pose also that you compare these ontologies with respect to set ¥ of concepts. [6, p.
1099] defines X-concept difference between O and 9’ as the set of all concept inclu-
sions that belong to the former but not to the latter ontology. Then ontology © is said
to X-entail ontology 9’ if X-concept difference between O and O’ is empty and also
that O and 9’ are X-inseparable if both T-concept difference between O and O’ and X-
concept difference between O’ and O are empty. Similarly, one can speak about £-query
difference, X-query entailment, and X-query inseparability if one takes into account not
concept inclusions but the so-called queries, i.e. formulae of the form 3xy,xz,...,x, ¢,
where ¢ is built out of atomic formulae and contains either variables x1,x3,...,x;,, which
are bounded in a query, variables y1,yz,...,y, or the so-called object names. Finally, [6,
p- 1101] defines also the notion of X-model difference (and its cognates) by means of the
notion of X-model.

Although the comparison between my proposal and the aforementioned concepts
from ontology comparison is not straightforward due to the obvious methodological dif-
ferences of assumptions, goals, etc., some similarities are sufficiently salient. In partic-
ular, the idea of the third grade of semantic indeterminacy can be expressed in terms of
Y-concept or query entailment. Loosely speaking, an ontology exhibits the third grade of
semantic indeterminacy if its “swapped” version X-concept or query entails it. The va-
lidity of this claim presupposes that we are interested only in DL-Lite ontologies, whose
expressivity is limited to concept inclusions.*

Another similar research concerns the problem of unification in description logic -
see, for instance, the latest survey in [1]. Briefly speaking, the latter problem deals with
equivalence of concept descriptions (in the sense of description logic) under a substi-
tution of concept descriptions for a subclass of concept names. Obviously, neither two
swappable ontological categories that give rise to semantic indeterminacy of a given on-
tology are bound to be unifiable within this ontology nor two unifiable predicates be se-
mantically indeterminate in the sense of definitions 1-3. However, the precise nature of
the relation between the unification problem and the grades of semantic indeterminacy
needs to be further investigated.

Finally ontology evaluation or, more specifically speaking, the rule-based approach
to ontology evaluation - see [11] - is comparable, although rather loosely, to my proposal.
For example, [3] defines the notion of ontological redundancy and provides a software
application for its detection. In the terminology of my paper one can express their notion
of redundancy saying that that formal ontology < Lang,2r > has a redundant axiom

4See the following quote from [6]:

To simplify presentation, in this paper we do not consider DL-Lite logics with role inclusions, focusing
mainly on the impact of the Boolean constructs in concept inclusions as well as number restrictions.[6, p.
1094]
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¢ — either of the form V¥ [6;(¥) — 6(7)] or 8(ay,az,...,a,) (where: aj,az,...,a, are
constants that are arguments of predicate 0) — if ¢ € €(z\ {¢}). Obviously, a formal
ontology with redundant axioms may or may not exhibit some grade of semantic indeter-
minacy and a formal ontology that exhibits some grade of semantic indeterminacy may
or may not have redundant axioms.
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