
Integrating OntoClean’s
Notion of Unity and Identity

with a Theory of Classes and Types
Towards a Method for Evaluating Ontologies

A. Patrice Seyed 1

Department of Computer Science and Engineering
Center for Cognitive Science

University at Buffalo, NY, USA

Abstract.
This paper provides a reformulation of OntoClean’s notion of Unity and Iden-

tity within a formal theory of classes, and evaluates how the reformulations ap-
ply to BFO’s theory of types, which was previously given within the same formal
theory. For Unity, a definition schema and explication together express the under-
lying dependency between a unifying relation and some proper subrelation of the
‘part of’ relation, which together define how a particular of a class is a whole. For
Identity, the notion of an identity criterion is ontologically grounded and formal-
ized as an identity procedure. For both Unity and Identity the formulations are ex-
pressed within a sorted first-order logic, where staying within first-order expressiv-
ity proved difficult in past work. With our reformulations in hand we evaluate the
primary type dichotomy for material entities of BFO, Object and ObjectAggregate.
Together with the work that integrates OntoClean’s notion of Rigidity with BFO’s
theory of types, this work augments ongoing efforts to build software designed to
evaluate and standardize OBO Foundry candidate ontologies, of which BFO is the
upper level ontology.

Keywords. ontology, OntoClean, BFO

Introduction

This paper provides a reformulation of OntoClean’s notion of Identity and Unity [1]
within a formal theory of classes [2] and evaluates how the reformulations apply to BFO’s
theory of types [3]. Together with our integration of OntoClean’s notion of Rigidity with
BFO’s theory of types [2], this work augments ongoing efforts to build software designed
to evaluate and standardize OBO Foundry candidate ontologies (e.g, the BFO-Rigidity
Wizard Plugin for Protégé 4 [4]), of which BFO is the upper level ontology.

The current work builds upon [2], where the categorical unit property and type are
unified under that of class, and a reformulation of Rigidity is given in service of a defi-

1Corresponding Author: A. Patrice Seyed, Department of Computer Science and Engineering, University at
Buffalo, 201 Bell Hall, Buffalo, NY, 14260, USA; Email: apseyed@buffalo.edu.

Formal Ontology in Information Systems
M. Donnelly and G. Guizzardi (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-084-0-205

205



nition of type. In that and the current work BFO’s theory of particulars is also assumed,
where particulars are entities confined to specific spatial, spatiotemporal, or temporal re-
gions (e.g., a specific grasshopper in front of me, its life, or the time interval that its life
spans, respectively). Formally, a particular x instantiates A at a time t iff x is a member
of the class A at t and A satisfies the formal conditions for being a type [2].

1. Reformulating OntoClean’s Notion of Unity for our Formal Theory of Classes

OntoClean’s notion of Unity is heavily influenced by [5]. By Guarino and Welty’s
(G&W’s) account, Unity is a metaproperty that a modeler assigns to properties to help
distinguish, for each instance of the property, it’s parts from the rest of the world. If a
property has Unity, this means there is some unifying relation that binds together cer-
tain parts of each instance of that property such that the parts compose the whole ob-
ject. When a modeler tries to identify a unifying relation that applies to each object of
a property, she is trying to answer: What are the parts such that they form a whole? [1]
cite Simons when offering an explanation of what it means for an object to be a whole,
which is as follows:2

Every member of some division of the object stands in a certain relation to every
other member, and no member bears this relation to anything other than members of
the division. [5, p. 327]

Simons emphasizes that this certain relation holds only among parts of a certain division.
These parts form a whole system.

[1] apply the theory of [5] for a closed system to their theory of Unity. An object
x is closed under a relation r, or simply r-closed, iff, if y is a part of x, and if y is in
the r relation to z, then z is a part of x.3 Although not cited, Guarino and Welty also
apply Simons’ theory of a connected system [5] to their theory of Unity. An object x is
connected under a relation r, or r-connected iff, if y and z are a part of x, then y and z are
related by r. G&W apply these notions to what it is to be an integrated whole (although
they do not give it formally for Unity):

An object x is a (contingent) r-integrated whole if there exists some division of x
such that it is a closed system. r will be called a base unifying relation for x [1].

(The use of ‘contingent’ here means “at some time” and is with respect to one snap-
shot in time only.) In more recent work [6] say that x is “whole under r” and the definition
above regarding “some division” is omitted altogether. In both [1] and [6], they provide
a definition for what it means for an object to be whole under a unifying relation, ω.

If x is whole under ω at t, then if y is a part of x at t and z is a part of x at t then y
and z are in the ω relation at t; furthermore, if y is a part of x at t, and y and z are in the ω

relation at t, then z is a part of x at t.

2Note that ‘member of’ is used here to provide in set-theoretic terms the relationship between a part of an
object and the object, which is different from our standard usage as the relationship between a particular and a
class.
3Relations introduced from other works that are not or not yet included in our formal system are introduced

in italics and their respective axioms are introduced in plain English.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity206



Therefore a unifying relation ω is reflexive, symmetric, and transitive, i.e., an equiv-
alence relation.4 The notion of “some division” is omitted in this definition, however it
is crucial to the theory because it implies that ω does not hold between just any parts.

They define that x is an intrinsic whole under ω if for all times x exists it is whole
under t. Applying this notion to properties, property φ is unified under ω iff for each
instance of φ it is an intrinsic whole under ω. [7] proves that if φ is unified under ω,
then the instances of φ are non-overlapping wholes, i.e., they do not partially overlap
with other entities with the same property. G&W define three categories of properties
based on these notions: Unity, Non-Unity, and Anti-Unity. A property has Unity if there
is a relation it is unified under, a property has Non-Unity if there is no one relation it is
unified under, and finally, a property has Anti-Unity if there is no instance of the property
that is an intrinsic whole under some relation.

G&W’s theory of Unity [1] includes a purported non-triviality stipulation, that it is
not the case that there is a universal unifying relation such that every object is an intrinsic
whole under it. [7] shows that this axiom does not accomplish its intent; it rules out
a universal unifying relation, but also allows for an infinite number of other unifying
relations that are trivially true.

We reformulate the notion that a property has Unity, i.e., that it has a unifying rela-
tion, under our theory of classes. We provide a definition schema for introducing it under
the meta-predicate Unified_Under:

Definition Schema 1. Unified_Under(A,ω,p) =def
∀x(∃t(member_of(x,A,t))→

∀t(exists_at(x,t)→
∀y(p(y,x,t)→

∀z(p(z,x,t)↔
ω(z,y,t))))) ∧

∀wvt(p(w,v,t)→ part_of(w,v,t)) ∧
¬∀wvt(part_of(w,v,t)→ p(w,v,t))

As with any schemata, the constants which are applied, i.e., the constants that take
the place of A, ω, and p replace occurrences of A, ω, and p of the wffs in the definiens
(i.e., right hand side) of the definition schema. As a definition schema, A serves as a
meta-variable that represents any particular class and ω and p serve as meta-variables
that represent any particular relations.

As mentioned, a unifying relation only holds among parts of a certain division and
not arbitrary parts. To capture this, within our formulation we apply a proper subrelation
p of the part_of relation of BFO/RO, instead of the generalized parthood relation ap-
plied by G&W, which corresponds what we have provided as part_of. Here p is some
relation that is based on a restricted notion of parthood; however, it is not always clear
how best to formalize this relation as it applies to a class A, therefore specifying Uni-
fied_Under(A,ω) can serve as a shortcut. Clearly however, there is a dependency be-
tween the unifying relation and the proper subrelation of part_of within the definition
schema of Unified_Under.

Unifying relations have a transitive, symmetric, and reflexive nature:5

4Clearly these are properties of binary relation; as discussed previously, we assume that the relation is
between two entities at some time represented in the third argument.
5Each proof is given in [4].

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 207



Metatheorem 1. Unified_Under(A,ω,p)→
∀x(∃t(member_of(x,A,t))→

∀t(exists_at(x,t)→
∀y(p(y,x,t)→

∀zw(ω(y,z,t) ∧ ω(z,w,t)→ ω(y,w,t))))) ∧
∀zw(ω(y,z,t)→ ω(z,y,t))))) ∧
ω(y,y,t))

Therefore, a unifying relation has the properties of an equivalence relation. Furthermore,
as shown by [7] for Unity, for our reinterpretation w.r.t. classes, for each member of a
class, if all and only its parts are unified by some relation, then the member does not
partially overlap with other members of that class:

Metatheorem 2. Unified_Under(A,ω,p)→
∀xyt(member_of(x,A,t) ∧ member_of(y,A,t)→

exists_at(x,t) ∧ exists_at(y,t)→
∃z(p(z,x,t) ∧ p(z,y,t))→

∀w(p(w,x,t)↔ p(w,y,t))))

We introduce here a relation that corresponds to RCC8’s connected with, con-
nected_with(x,y,t), in service of introducing a candidate unifying relation
connected_withtr(x,y,t), the transitive closure of connected_with. For an example, this
relation holds between a hand and a torso at some time.

We consider whether Ball is unified under the connected_withtr relation—that there
are certain parts of a ball that are connected via a chain of connections, and only those
parts are connected in this manner. We do not suggest that all parts of any ball hold in this
relation; in fact, this is disallowed by the definition schema for Unified_Under, where p
is a proper subrelation of part_of. This is also clearly reflected in the domain— for the
class Ball, the internals of some balls may contain loose, disconnected pieces of the ball
that are parts and not connected. Even though all parts of a solid ball are connected in
this manner (i.e., in the connected_withtr with every other part), this does not hold for
all balls, therefore Ball is not unified under the connected_withtr relation.

If we also consider a class Human Skeletal System, it is not simply unified under the
relation connected_withtr, either. For example, the Achilles’ tendon (calcaneal tendon)
connects the plantaris, gastrocnemius (calf) and soleus muscles to the calcaneus (heel)
bone, but these three muscles are not part of the human skeletal system.6 A more specific
relation or part_of relation is required, here to unify the class Human Skeletal System. In
a human’s skeletal system the bone parts form a path that is connected by joints. There-
fore the more specific relation that unifies the certain parts is connected by joints. We
could equally define a proper subrelation of part_of that is restricted to bones. Clearly
then, there is a dependency between the subrelation of part_of and the unifying relation
a class is unified under. We discuss potential unifying relations with respect to BFO’s
type dichotomy Object and ObjectAggregate in more detail in Section 3 and 4.

6We acknowledge there is a system called the ‘musculoskeletal system’ which includes muscles, as well as
bones, cartilage, tendons, ligaments, joints and other connective tissues. For our example, we only discuss the
skeletal system to outline connected entities that are not part of that system.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity208



2. Reformulating OntoClean’s Notion of Identity for our Formal Theory of Classes

Identity is a relation that every object has to itself and to nothing else. A criterion of
identity as a way to determine when the identity relation holds, or informally, to recog-
nize an object as the same again [8]. It is difficult to discuss the identity of a class of
objects without presupposing what the objects are based on an assumed class definition,
therefore identity criteria are better expressed as “identifying” criteria. [9] advises that
this is permissible, because it is unavoidable in so many cases, that an identity criterion
make reference to the class of objects the criterion of identity is being given for. How-
ever, it must not presuppose the criterion of identity for the class of objects whose iden-
tity criterion is being given [9]. For example, a criterion for the identity of events cannot
be having the same causes and effects if causes and effects are themselves events [9].
Similarly a criterion of identity for sets should not be having the same subsets.

Identity criteria that are both necessary and sufficient include occupying the same
spatio-temporal region for material entities or processes, and having the same members
for sets. Outside these examples, identity criteria that are both necessary and sufficient
are rare. To address this issue, G&W define necessary and sufficient criteria of iden-
tity separately. Another issue they address is identity with respect to time; identity can
be defined with respect to one time (synchronic) or defined across times (diachronic).
Therefore G&W provide time arguments that allow for either kind of identity criterion.

In many cases, analysis of identity can be limited to detecting the features that are
just necessary for keeping the identity of a given entity, based on what can be described
as essential properties. It is on these properties that G&W base necessary criteria of
identity. According to G&W, a necessary criterion of identity θ of a property φ is defined
such that for x and y that are instances of φ at t and t1, respectively, and exist at t and t1,
respectively, if x and y are the same object, then they are the same under θ (i.e., θ (x,y,t,t1)
holds).7 Where θ stands for ‘having the same genotype’ θ (x,y,t,t1) is read x at t and y at
t1 have the same genotype. For G&W, ‘same under’ captures the intuition that, based on
the identity criterion θ , there is some characteristic feature that is unique to the entity to
which the criterion is applied [6, p. 5].

In considering what an identity criterion is ontologically about, for such a criterion to
be applied, there must be some procedure, some instance of BFO’s Process type, during
which the identities of x and y are evaluated. More formally, confirms(P,x,y,t,t1) means
that, for x at t and y at t1, procedure type P confirms x and y are the same thing.We discuss
why the predicate confirms applies to a type, P, rather than a particular instance of P,
shortly. We define this proposed notion under our theory of classes, and define a predicate
Necessary-IP(A,P), which means that a class A has a necessary identity procedure P:

Definition 1. Necessary-IP(A,P) =def ∀xytt1((member_of(x,A,t) ∧
exists_at(x,t) ∧ member_of(y,A,t1) ∧ exists_at(y,t1))→
(x=y → confirms(P,x,y,t,t1)))

The nature of confirms(P,x,y,t,t1) is such that it is not necessarily the case that there
is a specific instance of P that has confirmed that x and y are the same; more accurately,

7The sense of ‘instance’ and ‘property’ is based on G&W. The property labels ‘Sugar’ and ‘Hydrophillic’ are
shortcuts for the more descriptive labels ‘being sugar’ and ‘being hydrophillic’. ‘instance’ is used differently
in BFO and ‘property’ is used differently in philosophy at large.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 209



the predicate relies on past instances of P. If confirms(P,x,y,t,t1) then there is at least
one particular whose identity has been confirmed in the past by an instance of P.8 More
formally, if Necessary-IP(A,P) then there is some w that is a member of A and exists at a
time t2, some v that is a member of A and exists at a time t3 and confirmed(P,p,w,v,t3,t4),
which means that w and v were confirmed as the same by a procedure instance p of P:

Axiom 1. (Necessary-IP(A,P)→
∃pwvt2t3(member_of(w,A,t2) ∧ exists_at(w,t2) ∧

member_of(v,A,t3) ∧ exists_at(v,t3)) ∧
confirmed(P,p,w,v,t2,t3))

Axiom 2. confirmed(P,p,w,v,t2,t3)→ ∃t(instance_of(p,P,t))

Since when Necessary-IP(A,P) you have confirmed(P,p,w,v,t2,t3), for any identity
procedure type P such that confirms(P,x,y,t,t1) it is linked to some instance p of P that
has been applied. For an instance p of the procedure class P, there is some part of the
procedure where a result of w is derived, and some part of the procedure where a result
of v is derived, and finally, there is an end part of the procedure where these results are
compared to determine whether or not w and v are the same thing. The procedure p need
not occupy contiguous spatio-temporal regions.

We provide a formalization of identity procedures that more concisely represent
the aforementioned procedure parts and their results. This is best explained with the
additional predicates result_of_procedure and matches. The former predicate, re-
sult_of_procedure(p1,w,t2), is a function that maps to some result of procedure p1 that
applies to the entity w at t2 (but need not span t2). For example, p1 may be a process that
has as a result the fingerprint pattern of a person. To evaluate identity for an entity, an-
other result must be acquired; hence, a second procedure, p2, is applied to an entity v at t3,
(result_of_procedure(p2,v,t3)). Therefore matches(result_of_procedure(p1,w,t2), re-
sult_of_procedure(p2,v,t3)) means the result of the first procedure “matches” the result
of the second procedure (e.g., two fingerprint patterns match). What ‘matches’ means
here depends entirely upon the identity procedure type, and it also depends upon the
identity of other things, since, as we discuss shortly, there is a recursive nature to identity
procedures. Given these formulations we have the following axiom:

Axiom 3. confirmed(P,p,w,v,t2,t3)→
∃p1p2(matches(result_of_procedure(p1,w,t2), result_of_procedure(p2,v,t3)) ∧
part_of(p1,p) ∧ part_of(p2,p))

The practical use of matches is that when applied to two results, if p1 and p2 are
parts of an instance of P that is a necessary identity procedure, if false, then x and y are
not identical. That said, because confirms(P,x,y,t,t1) captures the notion of an identity
procedure categorization applicable to every member of a class, we take the confirms
predicate to be our primary notion for formalizing the relation between identity proce-
dure types and classes of particulars to which the identity procedures apply.

With respect to our example, one such procedure isDNA_Profiling. WhenNecessary-
IP(Person,DNA_Profiling) holds, if x exists and is a member of Person at t and y exists

8We also observe that for P to be a legitimate identity procedure, there are many occurrences, i.e., members
of P where the identity of an entity has been confirmed in the past.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity210



and is a member of Person at t1, if x and y are identical, then confirms(DNA_Profiling,x,y,
t,t1) holds. Therefore ifNecessary-IP(Person,DNA_Profiling) holds, byour formulation of
confirmed (Axiom 2), it is true that an instance of DNA_Profiling has in the past served
to confirm necessary identity for an instance of the class Person.

DNA profiling requires the object being evaluated have a genotype, and since this
is what we consider an essential property for people, it is accurate to presume that the
existence of a person at some time entails the existence of their genotype at the same
time. Note that even thoughDNA profiling is a procedure type that confirms the necessary
identity of people, it is clearly not sufficient for confirming identity, due to the existence
of genetically identical twins.

The notion of a necessary identity procedure is perhaps more intuitive to think of
in terms of the contrapositive of the nested implication, x=y → confirms(P,x,y,t,t1) of
Definition 1. If two objects are not confirmed as identical by procedure P, they do not
have the same essential properties, therefore they certainly cannot be identical. In the
context of a modeler thinking about what a necessary identity procedure of a class is, it
is helpful, in order to identify essential properties, for her to answer the question: What
feature must change or no longer exist for a member of the class, at some time t, to no
longer be the same thing at a time after t?

According to G&W a sufficient identity criterion θ of a property φ is defined such
that for x and y that are instances of φ at t and t1, respectively, and exist at t and t1, re-
spectively, if θ (x,y,t,t1) holds, then x and y are identical. We reconsider criteria again, for
sufficient identity, and put forth a notion of sufficient identity procedures under our the-
ory of classes. Sufficient-IP(A,P) means that a class A has a sufficient identity procedure
P:

Definition 2. Sufficient-IP(A,P) =def ∀xytt1((member_of(x,A,t) ∧
exists_at(x,t) ∧ member_of(y,A,t1) ∧ exists_at(y,t1))→

(confirms(P,x,y,t,t1)→ x=y))

Take for example, a sufficient identity procedure FingerprintMatching for the class
Person.9 When Sufficient-IP(Person,FingerprintMatching) holds, if x exists and is
a member of Person at t and y exists and is a member of Person at t1, if con-
firms(FingerprintMatching,x,y,t,t1) holds, that is, if an instance of the type Fingerprint-
ingMatching confirms x at t and y at t1 are the same person, then x and y are identical.

The procedure type FingerprintingMatching is defined under the following natural
language parse: ‘a procedure in which fingerprint patterns that exist are analyzed, the
results of which are comparable to confirm identity’. The procedure requires a finger-
print pattern that represents an actual fingerprint’s pattern. Because fingerprints can be
removed, it is not possible to compute and compare fingerprint patterns between arbitrary
people at any time; therefore, the assumption that the fingerprint pattern being evaluated
during the procedure in question exists is needed as a basis for the class definition of
FingerprintMatching, in order for it to be a legitimate sufficient identity procedure.

This clarification of sufficient identity procedures brings attention to an important
point about what we consider necessary and sufficient procedures for identity. In each
case, the procedure involves the identity of functions which map from the objects of the
class in question (Axiom 3). [14, p. 20] noted that identity criteria often make use of the

9The exact precision for unique identification by fingerprinting is debated.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 211



notion of identity itself, and can only do so informatively by alluding to the identity of
things of another class. With respect to identity procedures, for the necessary identity
procedure class DNA profiling of the class Person, it is dependent on the identity of
genotypes, which must account for genetic variations over time that are due to mutations.
By this token, the corresponding identity criterion is non-primitive and can be reduced
to identity of functions mapped from individual people to their genotype, i.e., ‘genotype
of’.

Applying G&W’s formulation, if θ (x,y,t,t1) holds where θ is ‘having the same geno-
type’, this implies that the genotype of x at t is identical to the genotype of y at t1. If
a person x at t and a person y at t1 are identical under the sufficient identity criterion
having the same fingerprint pattern, there is some fingerprint pattern of x at t and finger-
print pattern of y at t1 which are identical. Nevertheless, by defining identity procedures
for necessary and sufficient identity, instead of criteria, these issues are dealt with more
simply, and by a designated identity procedure type that is a subtype of Process.

We designate necessary and sufficient identity procedures to be two kinds of identity
procedures (IP), and define a procedure that is both necessary and sufficient for identity
(N&S-IP). The necessary and sufficient identity procedure for the duration of time of
a process is TimeMeasurementProcedure. Here, the measurements, i.e., the values that
results from measurement of time, of x and of y, are identical according to some specific
scale.

[10] discuss how Non-Rigid properties seem to only “carry” (i.e., inherit) identity
criteria, for example the property being a student inherits its identity from being a person
which “supplies it”. An identity criterion proposed to be “supplied” (i.e., not inherited)
by being a student, for example having the same registration number, is only held within
certain durations of the student’s existence. Given this limitation, Guarino and Welty
decide that identity criteria that are not held by Rigid properties are not of interest to
their theory. Therefore they exclude these “local” identity criteria, like having the same
registration number. We provide this informal part of their theory formally and with
respect to classes and identity procedures:

Axiom 4. IP(A,P)→ ∃B(Rigid(B) ∧ IP(B,P) ∧ subclass_of(A,B))

It follows trivially that, for an identity procedure type P of a Non-Rigid class A, there is
some Rigid class B with that identity procedure type that is a superclass of A.

G&W define that a property φ “supplies” an identity criterion iff φ is Rigid, has the
identity criterion, and does not have a parent with that identity criterion. We consider
their definition for a notion of supplying an identity procedure, and provide it in terms of
classes. If A supplies an identity procedure P, that means all other classes with identity
procedure P are subclasses:

Definition 3. supplies-IP(A,P) =def IP(A,P) ∧ (∀B(IP(B,P)→ subclass_of(B,A))

It trivially follows that if a class A supplies an identity procedure P, and is a subclass
of a class B that has that identity procedure, then A and B are identical.10 By Axiom 4,
Definition 3, the axiom on the identity of classes, it also follows that if a class supplies
an identity procedure, it is Rigid:

10This assumes an axiom on the identity of classes; as given in [4]: A and B are identical iff a subclass of
one another.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity212



Theorem 1. ∃P(supplies-IP(A,P))→ Rigid(A)

Furthermore, there is some class that supplies every identity procedure:

Axiom 5. ∃A(IP(A,P))→ ∃B(supplies-IP(B,P))

From this and the definition of supplies-IP it follows that if a class has an identity pro-
cedure that it does not supply, there must be some superclass that supplies it:

Theorem 2. IP(A,P) ∧ ¬supplies-IP(A,P)→
∃B(A�=B ∧ subclass_of(A,B) ∧ supplies-IP(B,P))

For example, Primate supplies the identity procedure FingerprintMatching, which
is inherited by classes Human and Gorilla. In OntoClean, if a Non-Rigid property has
an identity criterion θ then it is subsumed by a Rigid property that supplies it. We also
provide this in terms of classes and identity procedures, which follows trivially from
Axiom 5 and the definition of supplies-IP:

Theorem 3. (Non-Rigid(A) ∧ IP(A,P))→
∃B(A�=B ∧ subclass_of(A,B) ∧ supplies-IP(B,P))

It follows that classes inherit necessary and sufficient identity procedures:

Theorem 4. (Necessary-IP(A,P) ∧ subclass_of(B,A))→
Necessary-IP(B,P)

Theorem 5. (Sufficient-IP(A,P) ∧ subclass_of(B,A))→
Sufficient-IP(B,P)

Because every type is a class, identity procedures are also inherited by types.
G&W discuss the notion that if two identity criteria are incompatible, then a prop-

erty cannot have both. Examples are given but the notion is not formalized. We define
Incompatible-IP(P,Q) to mean no class has identity procedures P and Q. If P and Q are
incompatible (exclusively necessary or sufficient identity procedures) of classes A and B,
respectively, and A and B are types, then they are disjoint types.

The utility of the Incompatible-IC(P,Q) for modeling is that if a class is purported
to have both P and Q identity procedures, then there is a mistake in classification or a
mistake in assignments of identity procedures to classes. It is a decision a modeler must
make to resolve the inconsistency.

3. Unity and Identity of BFO’s Object

BFO 1.1 defines Object as a type where every instance is “a material entity that is spa-
tially extended, maximally self-connected and self-contained, and possesses an internal
unity. The identity of object entities is independent of that of other entities and can be
maintained through time” [3, p. 48]. Examples include an organism, a heart, a chair, a
lung, and an apple. In the BFO sense, objects are not merely the sum of their parts, and
thus can survive the gain and loss of some parts.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 213



Also, instances of Object are described as having “internal unity”, which we suggest
is a relation closed under boundary parts. Object is not unified under connected_withtr,
for many reasons, including that it does not transitively hold for just the parts of each
particular that is an instance of Object. For example, there are fused particulars, such as
conjoined twins, where, even though connected_withtr holds between any two parts of
the fused totality, still the fused totality is not considered to be a single unified particular,
but a fusion of two particulars. Here the intuition of Kaplan’s proof is easily applied to
reject connected_withtr—by also lacking a clearly defined proper subrelation of part_of
to delineate certain parts—as a unifying relation for Object, due to overlapping parts.
Like unifying relations, practically useful identity procedures for BFO’s Object types are
those found for subtypes at the more specific domain ontology level.

4. Unity and Identity of BFO’s Object Aggregate

BFO 1.1 defines Object Aggregate as a type where every instance is “a material en-
tity that is a mereological sum of separate object entities and possesses non-connected
boundaries” [3, p. 48]. Examples include a heap of stones, a group of commuters on the
subway, a collection of random bacteria, a flock of geese, and the patients in a hospital.
Every object aggregate is composed of at least two distinct objects:

Axiom 6. instance_of(x,ObjectAggregate,t)→
∃yz(part_of(y,x,t) ∧ part_of(z,x,t) ∧

instance_of(y,Object,t) ∧
instance_of(z,Object,t) ∧ y�=z)

For ObjectAggregate, there is no one unifying relation that it is unified under (which
under G&W’s theory satisfies non-Unity) because there is some instance that shares parts
with another instance. For example, Barack Obama is a part of the aggregate of people
present for the State of the Union Address he gave on January 25, 2011, and at the same
time a part of the aggregate of people intending to run for U.S. President in the 2012
election.

Equally, there is no one identity procedure that applies to ObjectAggregate, but we
can distinguish primarily two types of aggregates based on whether or not a specific
identity procedures holds. Specifically, there are aggregates (1) whose identity is strictly
based on certain parts that sum the whole, and (2) whose identity is not identified in this
manner. We refer to these types of aggregates using corresponding subscripts to maintain
emphasis on how we define them here.

Each instance of ObjectAggregate1 is a mere grouping of spatially separated partic-
ulars, where these particulars serve as the parts, although not the only parts, of the aggre-
gate. These specific parts compose the sum of the aggregate, and this kind of aggregate
cannot survive the gain and loss of these parts. For example utensils in your kitchen is
precisely every utensil in your kitchen, at some time t. If one utensil is chipped at t1 it
is the same as the aggregate at t, but if the same utensil is destroyed at t2, then it is no
longer the same as the aggregate at t.

Does this mean that an instance of ObjectAggregate1 can survive some changes in its
parts? The answer to this question depends on the part relationship under question. The
member/aggregate relation is defined as that between an object and an object aggregate;

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity214



it is intransitive, irreflexive, and asymmetric. A fiat part of a stone (i.e., a part that does
not have distinct boundaries)11 in an aggregate of stones is not a member of the aggregate
of stones. In some literature, including [12], the member/aggregate relation is defined
separate from the ‘part of’ relation, but in other works it is a subrelation of ‘part of’.

This sort of contextually defined ‘part of’ relation is not given for BFO/RO, and the
part_of relation is used for the composition of both objects and object aggregates. The
motivation behind BFO’s position of strictly using part_of is for maintaining transitivity
of parthood across levels of granularity. BFO/RO’s part_of relation is true to classical
mereology, therefore part_of is always transitive. Given the transitivity of part_of, a fiat
part of a stone in an aggregate of stones is a part of the aggregate.

It is worth noting that some argue that the relationship between a stone and an aggre-
gate of stones is not ‘part of’ at all. Under this view the relationship is more specialized
and must address the nature of the whole, as covered by the member/aggregate relation.
There is also a tendency to associate the ‘part of’ relation with physical connectedness,
and under such an account the relation does not apply to the composition of aggregates.
For those who argue this position, the reading of “a piece of a stone is part of a stone
aggregate” goes against common-sense knowledge representation, and this much is true.

We propose a relation for BFO12, part_of_aggregate, to represent the mem-
ber/aggregate relation, where part_of_aggregate is a proper subrelation of part_of:

Axiom 7. part_of_aggregate(x,y,t)→ part_of(x,y,t)

Axiom 8. ¬∀xyt(part_of(x,y,t)→ part_of_aggregate(x,y,t))

Under this formulation if a stone is a member of an aggregate, the stone is also more
basically a part of the aggregate; therefore, the transitivity of part_of is still maintained
across grains. For example, if you observe what is an object aggregate at the microscopic
level, you might “zoom out” to what is an object at the human eye level. From either
level of granularity what composes the particular is a part of it. Introduction of this grain-
specific ‘part of’ relation, maintains this transitivity, via its super-relation, part_of.

Given this newly introduced relation, we can now formalize the (necessary and suf-
ficient) identity procedure of a class based on its extensionality (ME): a member is the
same over time iff it is inspected to have the same “member parts”:

Axiom 9. N&S-IP(A, ME)↔
∀xyt((member_of(x,A,t) ∧

member_of(y,A,t))→
(x=y ↔ ∀z(part_of_aggregate(z,x,t)↔

part_of_aggregate(z,y,t))))

ME is a necessary and sufficient identity procedure in which the member parts are in-
spected to be the same. By this axiom and our description of the types ObjectAggregate1
and ObjectAggregate2, it is the case that N&S-IP(A, ME) → A=ObjectAggregate1 ∧
A�=ObjectAggregate2. To answer the question posed, an instance a of ObjectAggregate1
can survive changes in some parts, but not changes of parts in the part_of_aggregate

11A fiat part object part is part of a object but is not demarcated by any physical discontinuities, e.g., upper
and lower lobes of the left lung [3].
12In this context reference to BFO assumes inclusion of the Relation Ontology (RO).

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 215



relation with a. Instances of ObjectAggregate2 are such that they can survive both kinds
of changes, thereforeME is not a necessary or sufficient identity procedure for this type.
Defining a class as having the identity procedure type of ME imposes that all subclasses
of it have this identity procedure; otherwise it is a modeling mistake. There are additional
interesting dichotomies subtyped beneath ObjectAggregate2, with respect to the roles the
member parts play, that we leave for future work.

Next we consider unifying relations for instances of ObjectAggregate. Take for ex-
ample the relation has the same parents as proposed as a relation the class Aggregate of
Siblings is unified under [13, p. 6]. 13 There are many other similarly defined unifying
relations for aggregates, for example, the unifying relation has the same immediate boss
as and being located in the same designated spatio-temporal region as, the former hold-
ing for member parts of an aggregate of certain co-workers, and the latter holding for
member parts of an aggregate of audience members of some event.

There are other purported unifying relations of classes of aggregates which suffer
from a problem that they only hold at the particular level and do not hold where the
Unified_Under relation applies, at the class level. For example, if the organization PETA
is an intrinsic whole under the relation pays dues to PETA, there is not a more generalized
relation like pays due to an organization that applies to all social organizations, because
clearly, there is some person-part of one organization that is a person-part of a different
organization at the same time (therefore it does not transitively hold). The same can be
said, for an aggregate a and a purported unifying relation being an aggregate part of a. In
both cases these relations are not a unifying relation at the class level. Furthermore, the
latter relation and others of its kind are also self-referring to the aggregate in question,
and are therefore trivial.

Ultimately then, as reinforced by our examples, the utility of our definition schema
for Unified_Under is that we apply it for a specific class A and purported unifying re-
lation ω, which may or may not hold as a unifying relation for purported subclasses of
A. If it does not hold, then the modeler must identify that either the purported subclasses
are not subclasses of A, or the ω is not a relation that A is unified under.

Unified_Under does not cover the stronger notion of Non-Unity introduced by
G&W (which can be given informally), however it does have it has immediate utility in
that it covers the notion of not having a specific kind of Unity, i.e., relative to an identified
unifying relation. Anti-Unity primarily holds for classes whose members are considered
amounts of matter, which we address in the following section.

5. Amounts of Matter

An amount of matter is the kind of entity that usually falls under terms that, in every-
day language, take singular verbs, cannot occur with numerals (unless elliptical for some
measurement), and takes determiners like ‘some’, ‘little’, and ‘much’, as opposed to ‘ev-
ery’, ‘few’, and ‘many’. These terms include ‘gold’, ‘sugar’, and ‘water’. As mentioned,
these terms refer to classes that satisfy G&W definition of Anti-Unity.

BFO holds the position that two distinct entities cannot occupy the same space at
the same time; therefore, what is referred to as a piece of tofu and the tofu “stuff” it is

13Note that the description ‘has the same parents as’ is intended to be interpreted as “born of the same
parents as” as opposed to “at some time, has the same parents as”.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity216



made of must be identical [15, p. 12]. However the tofu stuff is assumed to have different
existence conditions, since, for example, if it is split into one hundred pieces it still exists
while the portion of tofu no longer exists. Hence the notion of amounts of matter, in light
of BFO’s theory, leads to contradictions, in this case that some x exists at a time t and
does not exist at t.

Further, the purported class AmountOfMatter is inherently cross-granular in nature,
having features of both Object and ObjectAggregate, which causes problems for BFO.
More specifically, the tofu stuff is a whole object, given that all the parts are physically
connected by a chain of connections, while at the same time it is an aggregate, and one
in which its parts need not be connected to be a part. For BFO, an ontology represents
a certain, specific level of granularity [3], and by this approach, the types Object and
Object Aggregate are disjoint. Clearly these assumptions, together with the conclusion
that the portion of tofu and the tofu stuff are identical, result in an inconsistent ontology.
Ultimately, then, something that demonstrates the existence conditions of an amount of
matter is not a particular in BFO’s domain.

6. Conclusions

In our reformulation of OntoClean’s notion of Unity, we set forth a definition schema
and explication which reflects that a unifying relation depends on a specific ‘part of’
relation, where the dependency is mutual, which together help define how a particular is
a whole. In our reformulation of OntoClean’s notion of Identity, we ontologically ground
the notion of an identity criterion in what we consider an identifying procedure process,
which is an instance of BFO’s Occurrent type. In both cases we were able to express
the reformulations within a sorted first-order formal system, which proved difficult in
previous OntoClean work. Further, we formally provided, within our formal theory of
classes and types, notions such as supplying an identity procedure, and incompatibility
among identity procedures, which in previous literature were only given informally.

The notion of necessary identity procedures can help a modeler identify precisely
what features of the members of Rigid classes make them members of those classes,
which can be applied to compare any two members in a procedure that determines that
they are distinct or the same. Therefore, necessary identity procedures provide a facility
that supplements our formal theory of Rigidity, ergo types, and vice versa. The notion of
a sufficient identity procedure is more clearly epistemic in nature and less relevant to an
upper ontology with the ontological position such as BFO. Fingerprints can be removed
and social security numbers can be changed, all while the particulars they correspond
to can continue to exist. Nevertheless, sufficient identity procedures can be useful for
modeling, as they are inherited, and for ontologies that are linked to databases they can
be useful to the designation of primary keys.

Given these reformulations within a formal system that assumes our theory of
classes [2], we consider how they apply to the main dichotomy of material entities in
BFO’s theory of types, Object and ObjectAggregate. For the former, we concluded that
proposed unifying relations and identity procedures have the most utility at the domain
ontology level. For the latter, we isolated a division between aggregates defined on mem-
ber parts and those that are not. In the process we proposed a new relation for BFO,
part_of_aggregate, which is applied to define a necessary and sufficient identity proce-
dure for those aggregates defined on member parts.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity 217



In our analysis we also concluded that the particulars conceived as amounts of mat-
ter, which cross-cut the Object and ObjectAggregate types, do not fall within BFO’s do-
main of particulars. An ontologist that is deciding upon an upper ontology must consider
how this aspect of BFO’s theory of types might affect the models of their domain.

We expect that our reformulation of the Unity and Identity components of Onto-
Clean provide formal and intuitive value to the existing literature on OntoClean. In future
work, we will incorporate the resulting axioms and definitions to our existing decision
tree algorithm and a Protégé 4 Plugin [4], which is currently based on the integration of
the Rigidity component of OntoClean and BFO’s theory of types. Ultimately, this work
will help novice and expert ontologists build ontologies for the OBO Foundry that are
compliant with BFO.

References

[1] N. Guarino and C. Welty, Identity, Unity, and Individuality: Towards a Formal Toolkit for Ontological
Analysis. Proceedings of ECAI-2000, IOS Press, Amsterdam, (2000), 219–223.

[2] A.P. Seyed and S. C. Shapiro, Applying Rigidity to Standardizing OBO Foundry Candidate Ontologies,
Proceedings of the International Conference on Biomedical Ontologies (ICBO) (2011), 175–181.

[3] A. Spear, Ontology for the Twenty First Century: An Introduction with Recommendations. Technical
report, University at Buffalo, (2007).

[4] A. P. Seyed, A Method for Evaluating and Standardizing Ontologies. Ph.D. Dissertation. Department of
Computer Science and Engineering, University at Buffalo, (2012).

[5] P. Simons, Parts: A Study in Ontology. Clarendon Press, Oxford, (1987).
[6] N. Guarino and C. Welty, Identity and Subsumption. The Semantics of Relationships: an Interdisci-

plinary Perspective. Editors: Green, R. and Bean, C. A. and Hyon, Kluer, Dordrecht, (2001), 111–126.
[7] A. N. Kaplan, Towards a Consistent Logical Framework for Ontological Analysis. FOIS. Editors: Chris

Welty and Barry Smith. (2001), 244–255.
[8] G. Frege, The Foundations of Arithmetic. Blackwell: Oxford, (1950).
[9] E. J. Lowe, What is a Criterion of Identity? The Philosophical Quarterly. 39, 154, 1–21, (1989).
[10] N. Guarino and C. Welty, A Formal Ontology of Properties. Proceedings of EKAW-2000. Editors: R.

Dieng and O. Corby, Berlin, (2000).
[11] C. Welty and W. Andersen, Towards OntoClean 2.0: A framework for Rigidity. Applied Ontology, 1(1),

IOS Press, Amsterdam (2005), 107–116.
[12] G. Guizzardi, Ontological Foundations for Structural Conceptual Models. Centre for Telematics and

Information Technology, (2005).
[13] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari, Understanding Top-Level Ontological Distinc-

tions. Proceedings of IJCAI-01 Workshop on Ontologies and Information Sharing, (2001), 26–33.
[14] E. J. Lowe, Kinds of Being: A Study of Individuation, Identity, and the Logic of Sortal Terms. Blackwell

Publishers, Oxford, 1989.
[15] P. Grenon. BFO in a Nutshell: A Bi-categorical Axiomatization of BFO and Comparison with Onto-

Clean, Technical Report, (2003).
[16] B. Smith, The Logic of Biological Classification and the Foundations of Biomedical Ontology. Hand-

book on Ontologies: Invited Papers from the 10th International Conference on Logic, Methodology and
Philosophy of Science. Elsevier-North-Holland, (2003).

[17] W. Andersen and C. Menzel, Modal Rigidity in the Ontoclean Methodology. Formal Ontology in Infor-
mation Systems. Editors: A. C. Varzi and L. Vieu, IOS Press, Amsterdam, (2004), 119–127.

[18] M. Carrara. Identity and Modality in OntoClean. Applied Ontology 1(1), IOS Press, Amsterdam, (2004),
128–139.

[19] B. Smith and W. Ceusters, Ontological realism: A methodology for coordinated evolution of scientific
ontologies. Applied Ontology 5(3-4), (2010), 139-188.

[20] N. Guarino and C. A. Welty, An Overview of OntoClean, Handbook on Ontologies, (Eds.) S. Staab and
R. Studer, Springer Verlag, Berlin, (2004), 151–159.

A.P. Seyed / Integrating OntoClean’s Notion of Unity and Identity218


