
A Method for Evaluating Ontologies
Introducing the BFO-Rigidity Decision Tree Wizard

A. Patrice Seyed 1

Department of Computer Science and Engineering
Center for Cognitive Science

University at Buffalo, NY, USA

Abstract. In this paper we review the integration of BFO’s theory of types with
OntoClean’s notion of Rigidity, provide our decision tree procedure for evaluating
ontologies based on the integration, while also describing its implementation as a
Protégé 4 plugin, the BFO-Rigidity Decision Tree Wizard. Finally we provide a
practical analysis of controversial and important ontological topics surrounding the
BFO-Rigidity integration work. The decision tree approach allows our wizard plu-
gin to implicitly perform inferences on behalf of a modeler based on answers to
questions. This approach is accessible because it does not require familiarity with
BFO, OntoClean, or our first-order formal system, and does not require the modeler
to make assertions that are not normally considered within the scope of a domain
level ontology. Having chosen for our implementation a plugin environment that
interoperates with a popular ontology editor, we expect that the principles under-
lying the integration work will become more accessible to both novice and expert
domain modelers.

Keywords. BFO, OntoClean, ontology

Introduction

BFO is the designated upper ontology for the OBO Foundry. Although there is docu-
mentation listed as OBO Foundry principles on its website (http://obofoundry.org), still,
there is no formal principled criteria that a candidate domain ontology must meet for
ratification into the OBO Foundry. To address this problem we proposed a formal inte-
gration between OntoClean’s notion of Rigidity and BFO’s theory of types [1].2 In this
paper we review this integration, and provide our decision tree procedure for evaluating
ontologies based on the integration. We also describe the BFO-Rigidity Decision Tree
Wizard, a Protégé [2] plugin which implements the decision tree procedure. Having cho-
sen for our implementation a plugin environment that interoperates with a popular on-
tology editor, we expect that the principles underlying the integration work will become
more accessible to both novice and expert domain modelers (i.e., ontologists).

1Corresponding Author: A. Patrice Seyed, Department of Computer Science and Engineering, University at
Buffalo, 201 Bell Hall, Buffalo, NY, 14260, USA; Email: apseyed@buffalo.edu.
2We provide revised sections of that paper.

Formal Ontology in Information Systems
M. Donnelly and G. Guizzardi (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-084-0-191

191



Integration

OntoClean uses properties as its categorical unit, which are the intension, or meaning, of
general terms. BFO uses types, which are defined as that in reality to which the general
terms of science refer. As described in [1], to address the differing ontological perspec-
tives committed to by BFO and OntoClean, that is, realism and a mixture of natural lan-
guage semantics and epistemology, we “unify” property and types under the categorical
unit class. In what follows, we assume a first-order, sorted logic. Although there are many
theories of existence, we introduce a relation, exists_at(x,t), which is non-committal and
means that, under a certain ontological theory, object x is within its domain and x exists
at some time, t. Everything exists at some time [1].

member_of(x,A,t) means that object x satisfies the definition of class A at t. With
the member_of(x,A,t) relation, there is no commitment about the nature of A; therefore,
membership at a time does not presuppose that existence spans that time. This formula
maintains first-order expressivity because classes are treated as first-order objects of the
domain and are represented by terms, not predicates. Only particulars, not classes, are
members of a class. The classification relation subclass_of(A,B) is defined such that if x
is a member of A at t then x is a member of B at t.

A particular class might or might not satisfy the unary predicate Instantiated, which
means there is some member of A at t that exists at t:

Definition 1. Instantiated(A) =def ∃xt(member_of(x,A,t) ∧
exists_at(x,t))

The class Full_Eye_Transplant does not satisfy Instantiated because no such procedure
has been performed yet (therefore it has no members and is thus empty).

If a class has as members only those objects that exist at all times at which they are
members, it satisfies the predicateMembers_Exist:

Definition 2. Members_Exist(A) =def ∀xt(member_of(x,A,t)→
exists_at(x,t))

Assuming a class Animal is defined to have as members animals as long as they are not
dead and decayed,Members_Exist(Animal) holds.3

Rigidity has been defined in terms of S5 modal logic [3]. As part of our integration,
we provided just the underlying intuitions of those modal formalisms, prior to reformu-
lating Rigidity in our formal system. Each object that has a Rigid property has that prop-
erty at all times at which the object exists. We formalize this in terms of classes, instead
of properties, by the predicate Rigid:

Definition 3. Rigid(A) =def ∀x(∃t(member_of(x,A,t)) →
∀t1(exists_at(x,t1)→ member_of(x,A,t1)))

Rigid(Person) means that all members of the class Person are people at all times at
which they exist. As an amendment to the original formulation of Rigid, [3] proposes
that Rigid properties are only instantiated by actually existing objects. We have captured

3Although it may be more intuitive to equate an organism’s existence with living, BFO also includes the
timespan that is after death and before decomposition (B. Smith, Personal Communication).

A.P. Seyed / A Method for Evaluating Ontologies192



this intuition separately from Rigid, under theMembers_Exist predicate. Also, because
unexemplifiable properties are trivially Rigid, [3] constrains the theory (as suggested
by [4] and [5]) to properties for which there exists some instance.4 We have separately
defined this notion, also, under the Instantiated predicate.

Non-Rigid is the negation of Rigid, which we applied for our class formulation under
the predicate Non-Rigid:

Definition 4. Non-Rigid(A) =def ¬Rigid(A)

Assuming that a person is a member of Student only while a registered student, Non-
Rigid(Student) holds.

Anti-Rigid is true of a property, if, for every object that has that property, it is pos-
sible that it does not have that property at some time. An object may have an Anti-Rigid
property at all times at which it exists. BFO is not concerned with what could have been,
but rather what has been or currently is; therefore, Anti-Rigid is irrelevant to our theory
[1].

Note that by eliminating Anti-Rigid we cannot constrain the classification relation
in the same manner as was intended for OntoClean. In the modal system, it can be proven
that an Anti-Rigid property can only subsume Anti-Rigid properties. In our system there
is no notion of Anti-Rigid, and further, we cannot show that the subclass_of relation
does not hold between two classes when one is Non-Rigid and the other is Rigid. For
example, a class Human is Rigid and is the subclass of a Non-Rigid class defined by the
disjunction of Human and Student,5 and conversely, the class Student is Non-Rigid and
is a subclass of a Rigid class Human. The assignments of Rigid and Non-Rigid cannot
be immediately applied to inform a modeler when the subclass_of relation cannot hold
between classes, as was the case for assignments that included Anti-Rigid in OntoClean.
The Rigid/Non-Rigid distinction, however, is useful within the scope of BFO’s theory of
types, as we explain in what follows.

The objects of BFO’s domain are partitioned into particulars and types. Particulars
are entities confined to specific spatial, spatiotemporal, or temporal regions (e.g., a spe-
cific grasshopper in front of me, its life, or the time interval that its life spans, respec-
tively). Under BFO’s theory, existence of a particular is based on it being observable at
some level of granularity and/or causal by some scientifically-based measure. Numbers,
for example, do not exist in BFO.6 Type(A) means that A is a class that meets the criteria
for being a type, which we provide in what follows.

For the purposes of our evaluation method, we exclude classes that are controversial
with respect to identity, such as Embryo and Fetus from our domain; hence, types satisfy
Rigid. Types must also satisfy Instantiated [6]. A third criterion for every class that is a
type is that every member of the class at a time exists at that time; therefore, every type
satisfiesMembers_Exist. We therefore provide a set of criteria that every type satisfies:

4In OntoClean, “x instantiates a property” means that x has the property, which, as we describe shortly, is
different quite from BFO’s use of ‘instantiates’.
5Note that it is only contingent that a class defined by the disjunction of a Rigid class and a Non-Rigid class

is Non-Rigid. Our example assumes non-human students (e.g., service animals in training), but alternatively
under the assumption that all students are humans, a class defined by the disjunction of Human and Student is
Rigid.
6Note however that BFO is not a closed world artifact. Furthermore the proposals we make refer strictly to

BFO 1.1, since BFO evolves only very incrementally, but the bulk of the ideas will be valid even for the later
versions of BFO.

A.P. Seyed / A Method for Evaluating Ontologies 193



Axiom 1. Type(A)→ Rigid(A) ∧ Instantiated(A) ∧ Members_Exist(A)

The right hand side does not suffice as sufficient criteria due to “false positive” classes
that are not what BFO consider types, for example, Born in North America or Asia. With
these necessary conditions in hand, we define the notion of instantiation; x is an instance
of A at t means that x is a member of A at t and A is a type:

Definition 5. instance_of(x,A,t) =def member_of(x,A,t) ∧ Type(A)

It follows that every x that instantiates a type at t exists at t.
The root type of the BFO upper ontology is Entity; Continuant and Occurrent are

its subtypes. Continuants (e.g, bodily organs) exist fully in different time instants, but
occurrent happen over time, occupy regions of time and/or space, therefore have time as
a part. Strictly speaking occurrents do not exist in time, but for formal reasons we need
to add time indexes to some statements about processes; thus, it becomes possible to add
time indexes to statements asserting that processes exist, but these hold for all times:

Axiom 2. ∃t(instance_of(x,Occurrent,t))→
∀t1(instance_of(x,Occurrent,t1))

It follows that if an object instantiates Occurrent for some time, it exists for all time.
is_a(A,B) is the “backbone” BFO relation for scientific classification (i.e., building

taxonomies) and means that if x is an instance of type A at t then x is an instance of type B
at t. is_a is provably reflexive, transitive, and anti-symmetric. We exclude our treatment
of the direct subtyping relation direct_is_a [1], due to space constraints.

Following Aristotle’s division of objects into substances and accidents, the two sub-
types of Continuant are IndependentContinuant (IC) and DependentContinuant (DC),
respectively.7 The shape of a specific cell instantiates SpecificallyDependentContinuant
(SDC), and “depends on” a specific cell, which instantiates IC. depends_on(x,y,t) means
that the specifically dependent continuant x exists at t only if the independent continuant
y exists at t. It also means that x cannot migrate to another independent continuant.

Depends_On(A,B) means that for every instance of A there is some instance of B
where the former instance depends on the latter:

Definition 6. Depends_On(A,B) =def
∀xt(instance_of(x,A,t) →

∃y(instance_of(y,B,t) ∧ depends_on(x,y,t)))

If we assume the class Student has as members people at times at which they have the role
of student, Student satisfies Non-Rigid and is not a type. Alternatively, if the class Student
is “re-conceived” as having as members individual student roles, which are instances of
SDC, thenDepends_On(Student,Person) holds and the class satisfies Type. At each time
t at which some person x is a student, there exists some y that is a student role and is
dependent on x (i.e., ∃y(instance_of(y,Student,t) ∧ depends_on(y,x,t))). Since this type
falls under SDC and what in BFO’s theory is a Role type, a more fitting lexical designator
for this class is Student Role.

7Due to space, we omit treatment of the DC subtype GenericallyDependentContinuant (GDC), and restrict
our discussion to the DC subtype SpecificallyDependentContinuant (SDC).

A.P. Seyed / A Method for Evaluating Ontologies194



BFO’s theory of types is also committed to the Disjointness Principle,8 that two
types have no instances in common unless one is a subtype of the other. We also define a
relation disjoint_from(A,B), which holds iff types A and B do not share any instances at
any time. It follows sibling BFO upper ontology types (e.g., Continuant and Occurrent),
and more generally, any types not related by is_a, are disjoint types.

A class that has as members instances of disjoint upper ontology types, it satisfies
Heterogeneous:

Definition 7. Heterogeneous(A) =def ∃xBCt(member_of(x,A,t) ∧
member_of(x,B,t) ∧ member_of(x,C,t) ∧

disjoint_from(B,C))

Based on this definition and the definition of instance_of we can show that a hetero-
geneous class is instantiated; therefore, the definition excludes empty classes, which is
intuitive given the predicate’s typical meaning.

Decision Tree and Implementation

For our evaluation method, in what follows we present a decision tree procedure based
on the BFO-Rigidity integration, while at the same time introduce the BFO-Rigidity De-
cision Tree Wizard Plugin, developed for Protégé 4, which implements the procedure.
We chose the wizard-style plugin format because it lends itself to the decision-tree’s
question-asking. Within a software installation wizard a user is presented with an oppor-
tunity to configure the software with certain parameters; however, the installation may
not complete its execution successfully due to requirements of the software not being
met (e.g., not enough disk space). Similarly, the Wizard plugin allows a user to formally
model a class in many different ways; nevertheless, the Wizard Plugin will not allow a
class conceived in a way not compliant with BFO to be added to an ontology.

The Wizard Plugin follows the decision-tree procedure, and assumes that a modeler
is starting to build an ontology from scratch, and introduces one class at a time. In the
decision tree we use natural language questions in everyday language to primarily de-
termine from the modeler if Instantiated, Members_Exist, Rigid or Non-Rigid hold.
In some screens of the Wizard plugin we present hints in the form of tips and examples,
aimed to help a modeler understand the questions and ultimately BFO’s theory. Further,
in the event where the Wizard Plugin does not add a class to the ontology based on how
the class is conceived by the modeler, the system presents an explanation as to why the
class was not added to the ontology.

Figure 1 illustrates the decision tree procedure. The descriptions of the answer
choices forQuestion 2 correspond to more commonly modeled types under IC, DC, and
Occurrent, namelyMaterialEntity, SpecificallyDependentContinuant, and Process.9 The
other major types of BFO, SpatialRegion, TemporalRegion, and SpatioTemporalRegion,
and are based on the Newtonian space-time container theory. We exclude these types

8Our work is based on BFO version 1.1, which we consider stable and “frozen” for our research. Recent
work [7] indicates this principle only applies to the asserted is_a hierarchy. We address this topic in detail in a
later section.
9This is reflected in the Gene Ontology’s division of classes into Cellular Component,Molecular Function,

and Biological Process.

A.P. Seyed / A Method for Evaluating Ontologies 195



Figure 1. Decision Tree for Standardizing a Candidate Type

A.P. Seyed / A Method for Evaluating Ontologies196



Figure 2. ‘Enter Example’ Screen for the class Reactant

from our evaluation work simply because their instances are not the sort of objects sci-
entists reference directly in real-world settings. This is evidenced by the fact that there
are no subtypes for these in the OBO Foundry’s Ontology for Biomedical Investigations
(see http://purl.obolibrary.org/obo/obi.owl). There are certain other types, (e.g., Generi-
callyDependentContinuant) that will appear in an expanded version of the tree, in future
work.

In what follows we describe the decision tree procedures in terms of its questions
and also we present formal correspondences.At the same time, we provide an example
scenario where a modeler introduces a class, Reactant. We present Wizard plugin screen-
shots where interesting, which is frequently where the Wizard plugin provides additional
tips.

After a class name A is entered, the first question (Question 1) asks: “What is a
specific example of something that is a prototypical member of the class A?” In our
example scenario the modeler enter “this compound on the table”. In the corresponding
Wizard screen (Figure 2), various tips are given to help the modeler better answer the
question; for example, “Avoid mass nouns, they refer to cross-granular classes, which
cause problems for BFO.” This tip is based on our other work, an integration of BFOwith
OntoClean’s notion of Unity, but is introduced here being it is crucial for understanding
what a particular is. Based on that integration work, classes that OntoClean considers
as having Anti-Unity causes an inconsistency in a BFO-compliant ontology. Another tip
is: “A class has particulars, not classes, as members.” This helps avoid the modeling of
meta-classes, which is not compliant with our theory of classes and subsequently also
not compliant with BFO.

OnceQuestion 1 is answered the modeler has entered both a class name A and an ex-
ample member a of the class, therefore it is implicitly asserted that ∃t(member_of(a,A,t)).
Question 2 attempts to determine if a is an instance of the type (a) MaterialEntity, (b)
SpecificallyDependentContinuant, or (c) Process by applying natural language descrip-
tions of each. In our example scenario the modeler chooses ‘(a)’.

A.P. Seyed / A Method for Evaluating Ontologies 197



If Question 2 is answered ‘(d)’, then based on our restriction to material entities,
specifically dependent continuants, and processes it is not the case that what ‘a’ repre-
sents falls within our restricted version of BFO’s domain. When (d) is chosen, an error
message is given that reflects this issue. The choice (d) actually corresponds, although
contradictorily, to the assertion ¬∃t(exists_at(a,t)). As mentioned previously, if some x
is in BFO’s domain it exists at some time. What cannot be represented, due to the con-
tradictory nature of the assertion, but is assumed under BFO theory, is that if something
does not fall within what x ranges over it does not exist at any time. Formally the as-
sertion leads to an inconsistent ontology because by application of the aforementioned
axiom ¬∃t(exists_at(a,t)) ∧ ∃t(exists_at(a,t)), a contradiction.

In order to revise the ontology such that it is consistent, at least one of the conjuncts
must be removed. Because the latter conjunct follows from an axiom of our system, we
consider if the former conjunct should be removed, ¬∃t(exists_at(a,t)). Unfortunately,
removal of this conjunct is not the case either since the choice of (d) confirms it. Given
this, the overall conjunctive assertion and a as a domain object should be removed, which
follows from the fact that the purported particular a is not a particular within the restricted
BFO domain. Since there may be other objects the modelers consider members of A, it
is not necessarily the case that A is an empty class, but this is the case if every member
follows the modeler’s assumptions for a.

Also note that even if the modeler answers (a), (b), or (c) for Question 2, it is not
necessarily the case that, according to BFO’s theory, x exists at some time. The reason
is that the modeler may interpret that the question is asked in such a way that it implies
that x is something that exists. For example the question “Is Bigfoot a vertebrate?” may
be interpreted as “If Bigfoot were real, is Bigfoot a vertebrate?” In cases such as this, the
question is unintendedly a trick question.

Given this issue one might suggest a potential question reordering such that a ques-
tion about the existence of the example come before a question about its categorization.
This is also troublesome because existence means something different based on the type
of particular being considered. To mitigate these problems, the current approach attempts
to ground the example in notions that are more accessible to the modeler. First the mod-
eler is asked for an example for the class she is modeling (Question 1), and second the
modeler is asked to choose a corresponding description, each of which describes one of
the BFO types MaterialEntity, SDC, and Process (Question 2). To mitigate the issue,
tips are given to highlight what existence is in BFO, where negative examples are given
when the categorization is requested.

Question 3 asks a question to determine if all members of A are instances of the
same type selected in Question 2. So for instance, if (a) is selected for Question 2,
this corresponds to the assertion ∃t(member_of(a,MaterialEntity,t)), and if Question
3 is answered “yes”, then this corresponds to the assertion ∃t(member_of(x,A,t)) →
∃t1(member_of(x,MaterialEntity,t)). Note that in the latter assertion time is not bound
from the antecedent to the consequent because there is nothing in the question that con-
strains the members to be material things at all times it is a member of A. Overall, the
formal correspondence of this question is relatively weak, but the question primarily iso-
lates classes that have as members instances of disjoint upper ontology types. For our
example scenario the modeler confirms all members are material entities. As show in
Figure 1, Question 4 tries to help determine if the class satisfies Heterogeneous, and if
the modeler confirms this, then an error message explains the problem.

A.P. Seyed / A Method for Evaluating Ontologies198



Question 5 and Question 6, as given in Figure 1, determine whether or not the
example and then all members of the class exist at all times they are members, respec-
tively.10 For Question 5 the answers and corresponding assertions are:

(yes): ∃t(member_of(a,A,t) ∧ ¬exists_at(a,t))
(no): member_of(a,A,t)→ exists_at(a,t)

Based on a ‘no’ answer to Question 5, and the answer to Question 1, which corre-
sponds to ∃t(member_of(a,A,t), it follows that ∃t(member_of(a,A,t) ∧ exists_at(a,t)).
From this formula and Definition 1 it follows that Instantiated(A). From the ‘yes’ as-
sertion for Question 5a it follows that ¬Members_Exist(A) (based on Definition 2),
and from that it follows that ¬Type(A) (based on Axiom 1). Note that for the version
of Question 5 for processes, 5b, if ‘yes’ is the given answer, it would lead to an incon-
sistent ontology. This is due to the fact that processes exist for all time; therefore, the
example falls outside of the domain. For our example scenario the modeler answers ‘no’
to Question 5a.

For Question 6 the answers and corresponding assertions are:

(yes): ∃xt(member_of(x,A,t) ∧ ¬exists_at(x,t))
(no): member_of(x,A,t)→ exists_at(x,t)

From a ‘yes’ answer to Question 6a it also follows that ¬Members_Exists(A)
(based on Definition 2), and from that it follows that ¬Type(A) (based on Axiom 1). As
with Question 5, for the version of Question 6 for processes, 6b, if ‘yes’ is the answer
given, it leads to an inconsistent ontology. If a ‘no’ answer is given for both Question 5
andQuestion 6, thenMembers_Exists(A) holds and additional questions are posed. For
our example scenario the modeler answers ‘no’ to Question 6a.

Question 7 and Question 8 determine whether or not the example and then all
members of the class are members at all time they exist, respectively. ForQuestion 7 the
answers and corresponding assertions are:

(yes): ∃t(¬member_of(a,A,t) ∧ exists_at(a,t))
(no): member_of(a,A,t)→ ∀t1(exists_at(a,t1)→ member_of(a,A,t1))

For Question 8 the answer and corresponding asserted formulas are:

(yes): ∃xt(¬member_of(x,A,t) ∧ exists_at(x,t))
(no): member_of(x,A,t)→ ∀t1(exists_at(x,t1)→ member_of(x,A,t1))

Based on ‘no’ answers for Question 7 and Question 8, and the assertion of Ques-
tion 1 (∃t(member_of(a,A,t))), it follows that Rigid(A) (based on Definition 3). Based
on a ‘yes’ answer for either Question 7 or Question 8, it follows that Non-Rigid(A)
(based on Definition 3). For our example scenario the modeler answers ‘no’ toQuestion
7. Although we don’t formalize it in our system due to some exceptions, for the sake of
the decision tree we assume that if A satisfies Instantiated,Members_Exist, and Rigid

10Question 5, 6, 7, and 8 have alternate versions: ‘(a)’ phrases the question to address the existence of
material entities or specifically dependent continuants, and ‘(b)’ phrases the question to address the existence
of processes. The version asked of the modeler is based on previous answers. For simplicity, in this chapter we
refer to the overall question instead of the specific version.

A.P. Seyed / A Method for Evaluating Ontologies 199



it also satisfies Type. We hope to address the exceptions in future work and in consider-
ation of the upcoming BFO 2.0. For the candidate A, the answer ‘no’ to Question 5, 6, 7
or 8 results in the inference that ¬Type(A) (based on Axiom 1).

The rest of the decision tree starting with Question 9 addresses how to model
the candidate based on it satisfying Non-Rigid (along with Instantiated and Mem-
bers_Exist).Question 9 tries to determine why A is Non-Rigid. The answer choices (a),
(b), and (c) correspond to an assertion that objects are member of A because of an implicit
relationship to a SDC particular, a Process particular, and being a part of something,
respectively. Tips as well as examples are presented within the Wizard Plugin screen to
help the modeler decide. One of the difficulties with this question is that, for example,
if the class is Student then the answer could be (a), assuming the implicit relationship
to a student role, or it could be (b), assuming the implicit relationship to the process a
student participates in while being enrolled in an academic program (i.e., student life).
To help address this ambiguity screen provides the tip “Select the more basic notion; if
something is located in x because of being a part of x, then being part of x is the more
basic notion.” For our example scenario the modeler chooses ‘(a)’.

The answer for Question 9 determines if the additional entity to represent is (a) a
quality, function, or role, (b) a process (c) a part of something else under the same BFO
types.Question 10, 11, and 12 all ask the same question but the assertion made following
it is primarily based on the answer to Question 9. The question is “Under which type
of MaterialEntity are the only members of A?” The corresponding screen of the Wizard
Plugin is slightly more verbose, and here the modeler is given the opportunity to select a
superclass from the current ontology’s class hierarchy. The Wizard provides the natural
language parse for what a material entity is, and asks the modeler to choose the most
specific class that all members of the introduced class are also members. For Question
10 in the example scenario the modeler chooses MaterialEntity from the class hierarchy
because a more specific class is not yet in the class hierarchy.

The next, ‘Further Restriction’ screen (pictured in Figure 3 and not represented in
the decision tree figure) attempts to confirm whether or not there is a class more specific
than MaterialEntity that is in the relationship with the modeled class members. If the
modeler selects an option indicating there is, then the decision tree procedure is executed
again, initiated again by the modeler being asked to enter the class name for the more
specific class. Only if the class satisfies the necessary criteria for being a type, confirmed
by application of the decision tree procedure, is the class added into the ontology and as
the restriction to the originally introduced class that was determined to be Non-Rigid.

For our example scenario, the modeler selects the option: “There is a class or group
of classes more specific than Material Entity which all members of Reactant are mem-
bers of and which the class hierarchy does not include yet.” To complete the example
scenario, the modeler enters Compound as the class to restrict Reactant to which through
the decision tree is found to satisfy the necessary criteria for a type. Following Element
is added through the next iteration after making the same choice again in the ‘Further
Restriction’ screen. Figure 4 displays the assertions made on behalf of the modeler for
the class Reactant based on these modeling choices. Note here that Protege is using
OWL-DL and therefore lacks expressivity for representing the restriction on a time index
formalized in Definition 6.

Ultimately, answers to questions of the decision tree correspond to formulas that can
be asserted in our formal system, and the inferences based on these formulas are implic-

A.P. Seyed / A Method for Evaluating Ontologies200



Figure 3. ‘Further Restriction’ Screen for class Reactant

Figure 4. Description Screen for the class Reactant

itly made within the decision tree’s structure and on behalf of the modeler. This approach
avoids having the modeler assert these axioms directly within our formal system, which
is useful because these sorts of assertions are not generally considered within the scope
of a domain level ontology.

One benefit of forcing a modeler to identify classes that satisfy Heterogeneous is
that it helps eliminate candidate types that conflate a classification under both Continuant
and Occurrent. Another benefit of isolating classes which satisfy Heterogeneous is that
it identifies and disallows into a domain ontology candidate types which are inherently
upper level. For example, if a modeler introduces a class Thing which has as members all
entities which BFO considers continuants and occurrents, then it is an upper level class
and is redundant with Entity.

A.P. Seyed / A Method for Evaluating Ontologies 201



Practicality of the Disjointness Principle and Modeling Certain Classes that are
Not Types

In recent efforts within the OBO Foundry community, it has become clear that the Dis-
jointness Principle is a constraint that is difficult to enforce in practical modeling. In
recent work, [7] advocate the principle of asserted single inheritance, citing [8] on the
topic. 11

We evaluate the principle of single inheritance in the scope of an example from OBI,
that Hybridization Oven is asserted as a subclass of both Incubator and Container. To-
gether, the two corresponding asserted axioms violate the aforementioned principle of
asserted single inheritance. Incubator is an inferred subclass of Device, and Container is
fully defined (i.e., the necessary and sufficient conditions are given) such that it is a sub-
class of Device and has the function of contain function. Therefore, only the condition
that Hybridization Oven has the function of contain function would need to be given to
infer that Hybridization Oven is a subclass of Container. If the definition of Hybridiza-
tion Oven were changed in this manner, i.e., that it has the function contain function in-
stead of being a subclass of Container, the violation of the principle of asserted single
inheritance, recommended by Rector, would be alleviated.

However the principle of asserted single inheritance misses the point, however, be-
cause it focuses on the manner in which an ontology is specified and not on the the classi-
fication units applied to the objects of the ontology’s domain. There is a way to preserve
the original principle of BFO, in part by maintaining the classification units, class and
type, and instead adopting another, related principle that [8] sets forth.

The principle is that in an ontology each class has no more than one primitive par-
ent (i.e., immediate superclass). This principle and the principle of asserted single in-
heritance are similar, and would be one and the same under the assumption that classes
can only be asserted as subclasses of those classes that are primitive. Alas, the principles
are different because no such assumption is made nor is the assertion of subclasses of
defined classes prevented in any ontology tool, such as Protégé.

The notion of a primitive class is connected to that of types because types are ex-
tremely difficult to define completely in a formal language [8]. Therefore types are usu-
ally primitive classes of an ontology, with the exception of being fully defined via a cov-
ering axiom.12 Note that, however, not all primitive classes are types; a class that is typ-
ically defined may be left incompletely specified and thus primitive for any number of
potential reasons.

From our example, Hybridization Oven is consistent with the one primitive parent
principle becauseContainer is a defined class, thereforeHybridization Oven only has one
primitive superclass, Incubator. By this approach, then, Container is not a type because
it is a defined class (that is not due to a covering axiom). In adopting this principle, the
modeler must have a way to annotate classes that are primitive but will be defined at a

11The notion of asserted versus inferred hierarchy is relevant within the context of Description Logics, where
an asserted class hierarchy is constructed purely based on the axioms of an ontology, and an inferred hierarchy
is obtained by the application of a classifier (i.e., a classification reasoner) on the set of axioms of an ontology
to obtain all subclass relationships.
12In the OWL version of BFO (http://www.ifomis.org/bfo/), Entity is defined by the disjunction of Contin-

uant and Occurrent.

A.P. Seyed / A Method for Evaluating Ontologies202



later time, for exclusion from the evaluation of whether an ontology is consistent with
the one primitive parent principle.

Given this clarification, a larger issue is then whether or not a BFO-compliant on-
tology may include classes which are not types, those which are usually defined classes.
If they may not, then Container would be excluded from the ontology, as it is fully de-
fined. In general, there are certain classes, like Container, that are not types but satisfy
Instantiated and Members_Exist that may be useful in a domain ontology, and there
are other classes that do not satisfy either Instantiated orMembers_Exist, likeUnicorn,
that are not appropriate in a BFO-compliant domain ontology. We continue to exclude
both kinds of classes from our ontology evaluation method, since our method remains
centered on the importance of initially developing a well-founded type hierarchy, and
compliance with BFO 1.1. We do concede, however, in some cases, that the former kind
may have utility and recommend that they be added later in development of the ontology,
for application-specific purposes and with clear annotation that designates them as such.
The type hierarchy, hence, provides a foundation for adding such classes that are fully
defined.

By our approach the label applied for the class of students that is originally con-
ceived by the modeler is applied to a different class, that which BFO considers a sub-
type of Role. With a change in policy that allows for defined classes, alternatively the
class Student would be kept in the ontology and defined by its relationship with a class
in the Role hierarchy (here assumed Student-Role) and its classification under a BFO
type (here assumed Person): subclass_of(Student, Person) ∧ Has_Dependent(Student,
Student-Role) ∧ Depends_On(Student-Role, Person).13 Clearly then, such a change in
policy allows the modeler to still introduce the class she originally had in mind, in the
case of Non-Rigid classes like this one.

Conclusions

Violations of disjointness axioms of an ontology loaded into Protégé are made apparent
only after a classifier (i.e., DL reasoner) is run on the ontology, therefore there may be in-
consistencies in the ontology without a modeler’s knowledge. To mitigate this problem,
[9] encourage users to execute a classifier early and often. However, in typically mod-
eling situations, the classifier may not be run until after several modeling mistakes have
been made. Our plugin, based on our decision tree algorithm, enforces that an ontology
remains consistent with respect to the disjointness axioms of upper ontology types, by
asking certain questions, and applying the respective answers to restricting where a class
is rooted. There is no currently known plugin for Protégé that accomplishes this for a
modeler with respect to an upper ontology.

In performing this work we have discovered that a reformulated notion of Rigidity
can play a key role in domain modeling under BFO’s upper ontology. Under BFO’s
theory, using classes as the only categorical unit is limiting, hence the introduction of
types. All types are Rigid, and a candidate type being assigned by a modeler as Non-
Rigid reveals that addition work is required by the modeler for their ontology to be BFO-
compliant.

13Has_Dependent(A,B) means for every instance of x of A at t there is some instance of y of B at t such that
y depends on x at t.

A.P. Seyed / A Method for Evaluating Ontologies 203



One of the major challenges of integrating BFO with OntoClean is that both theories
include informal and formal aspects. For instance, the document titled the BFO manual
on the BFO website (http://www.ifomis.org/bfo) explicates all the types of BFO 1.1’s
ontology, but it does not include any axioms. There are many other papers by the origi-
nator of BFO, Barry Smith, that do include axioms, but it is not clear if these papers are
considered a part of BFO or not. With a release of BFO 2.0 upcoming, it was also impor-
tant not to confuse more experimental aspects of 2.0 with what is documented as BFO
1.1. These challenges were mitigated, for the most part, by personal communication with
Barry Smith.

On the side of OntoClean, the formulations of Rigidity have evolved through the
various papers published by Guarino and Welty. In more recent publications [10] the
axioms are omitted. We surmise that this approach is taken to make OntoClean more
accessible to laypeople while also minimizing time spent on various logical issues which
whose resolution may not offer practical value. We offer the current work formally, with
informal explication of our integrated theory, while also providing an implementation
based on a decision tree that can serve as a training tool.

While testing the Wizard plugin it became more apparent that the Wizard forces a
modeler to think about aspects of the class he is modeling that he may not have consid-
ered when first introducing the class. We think this is one of the values of the Wizard–a
class will not be added to the ontology until the modeler undergoes the necessary think-
ing process needed for the class to be considered an addition to a BFO-compliant ontol-
ogy. The Wizard provides the sort of evaluation that, ideally, an experienced an ontolo-
gist performs at an intuitive level when adding classes to an ontology. The Wizard makes
this exercise explicit and directed.

References

[1] A.P. Seyed and S. C. Shapiro, Applying Rigidity to Standardizing OBO Foundry Candidate Ontologies,
Proceedings of the International Conference on Biomedical Ontologies (ICBO) (2011), 175–181.

[2] H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A. Musen, The Protege OWL Plugin: An Open Devel-
opment Environment for Semantic Web Applications. In S.A. McIlraith, D. Plexousakis, Third Interna-
tional Semantic Web Conference, New York. Springer Verlag, (2004), 229–243.

[3] C. Welty and W. Andersen, Towards OntoClean 2.0: A framework for Rigidity. Applied Ontology, 1(1),
IOS Press, Amsterdam (2005), 107–116.

[4] W. Andersen and C. Menzel, Modal Rigidity in the Ontoclean Methodology. Formal Ontology in Infor-
mation Systems. Editors: A. C. Varzi and L. Vieu, IOS Press, Amsterdam, (2004), 119–127.

[5] M. Carrara. Identity and Modality in OntoClean, Applied Ontology 1(1), IOS Press, Amsterdam, (2004),
128–139.

[6] B. Smith, The Logic of Biological Classification and the Foundations of Biomedical Ontology. Hand-
book on Ontologies: Invited Papers from the 10th International Conference on Logic, Methodology and
Philosophy of Science. Elsevier-North-Holland, (2003).

[7] B. Smith and W. Ceusters, Ontological realism: A methodology for coordinated evolution of scientific
ontologies. Applied Ontology 5(3-4), (2010), 139-188.

[8] A. Rector. Modularisation of Domain Ontologies Implemented in Description Logics and related for-
malisms including OWL, In Third International Conference on Knowledge Capture, 23, (2003), 25.

[9] A. Rector, N. Drummond, M. Horridge, J. Rodgers, H. Knublauch, R. Stevens, H. Wang, and C.
Wroe. OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns,
Springer, (2004), 63–81.

[10] N. Guarino and C. A. Welty, An Overview of OntoClean, Handbook on Ontologies, (Eds.) S. Staab and
R. Studer, Springer Verlag, Berlin, (2004), 151–159.

A.P. Seyed / A Method for Evaluating Ontologies204


