
Using Partial Automorphisms to Design
Process Ontologies

Bahar Aameri a
a Department of Computer Science, University of Toronto, Canada

bahar@cs.toronto.edu

Abstract. Process ontologies play key roles in semantic integration and decision
support systems for applications in manufacturing, enterprise modeling and e-
commerce. In this paper, we propose a methodology for the design and verification
of domain-specific process ontologies that are extensions of generic process ontolo-
gies. This allows us to evaluate the correctness of process ontologies with respect
to the class of intended models for their respective domains. Our approach is based
on the correspondence between the effects of activities in the process ontology and
the partial automorphisms of models of the underlying domain ontology. We then
investigate in detail the process ontology for the domain of chains (sets of disjoint
linear orderings) using this methodology.

1. Introduction

Although much work has been done on the development of generic process ontologies
([1], [2], [3]), many applications within semantic integration and decision support re-
quire process ontologies that axiomatize classes of activities that are specific to a particu-
lar domain, such as biology, manufacturing, and e-commerce. Although specific ontolo-
gies have been developed in these areas for individual problems, nobody has proposed a
general method to design, verify, and evaluate such domain specific ontologies.

Ontology verification includes a characterization of the models of the axiomatization
of an ontology up to isomorphism and determining whether or not these models are
equivalent to intended models of the ontology [4]. The verification of domain-specific
process ontologies requires us to characterize the correctness and completeness of the
classes of activities with respect to a particular domain. Correctness is concerned with
determining whether the effects of the activities preserve the underlying constraints on
possible states within the domain. Completeness addresses the problem of determining
whether the process ontology specifies all possible activities i.e. all possible ways of
changing states with regard to domain constrains.

The methodology presented in this paper was initially motivated by the problem of
axiomatizing qualitative spatial change. Although many efforts have been made in de-
veloping ad-hoc representations of spatial change, such as [5] and [6], relatively little
have been done on expanding a general approach in this regard. An attempt to general-
ize the axiomatization of spatial change was by Grenon and Smith [7]; they presented
a modular ontology, called SNAP and SPAN, such that a SNAP ontology axiomatizes
the depiction of entities at a given time, whereas a SPAN ontology describes entities that

Formal Ontology in Information Systems
M. Donnelly and G. Guizzardi (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-084-0-309

309

reveal themselves within some interval of time. Intuitively, “a SNAP ontology is analo-
gous to a snapshot, or to the results of a process of sampling”, while a SPAN ontology
is “analogous to videos time spanning” [7]. A major concern with this approach is that
some axioms of the ontology contain quantification over the ontology itself, which is
unusual. Moreover, the correctness and completeness of the ontology has not been veri-
fied. The work in [8] proposes another systematic approach for modeling spatial change;
their formalization is based on a first-order casual theory that adheres to the semantics of
situation calculus and specifies the general template for representing a changing spatial
environment. However, like SNAP and SPAN ontology, they do not provide a general
methodology for verification of the resulting theory.

It should be emphasized that a domain-specific process ontology is distinct from pro-
cess descriptions or action theories ([3], [9]). The process ontology contains an explicit
axiomatization of a taxonomy of classes of activities, whereas an action theory specifies
the effects and preconditions of particular activities within the domain. The relationship
between the process ontology and action theories will be discussed in more detail to-
wards the end of the paper. In addition, the axiomatization of the process ontology is
independent of whatever approach is taken to the frame problem.

The approach presented here is to begin with an ontology about a specific domain,
such as shapes or partial orderings, and then characterize the ways in which activities
can possibly change relationships among objects in the domain. By identifying models
of the domain ontology associated with states within the process ontology, we can use
properties of models to prove correctness of the domain process ontology. Since an ac-
tivity occurrence changes some fluents while leaving others unchanged, we turn to the
notion of partial automorphism, which is a mapping on a model to itself that preserves
some substructures. Intuitively, fluents are unchanged by an occurrence of an activity if
they correspond to substructures of models of the domain ontology that are fixed by the
partial automorphisms. We use partial automorphisms to characterize the preserved sub-
structures that corresponds to the effects of an activity. In particular, we take advantage
of the properties of partial automorphisms to specify a complete taxonomy of the domain
process and then to prove that every possible activity falls in one of those classes.

We apply the methodology to a domain ontology that axiomatizes the class of chains
(disjoint discrete linear orderings). We do this for several reasons. First, the correspond-
ing domain process ontology can be applied to areas such as train marshalling and al-
ternative splicing within gene transcription. Second, chains and their partial automor-
phisms are well-known and well-studied structures [10,11]. Finally, the underlying do-
main ontology for Blocks World also axiomatizes the class of chains, and this allows
us to demonstrate the correctness and completeness of this approach with respect to a
well-studied and well-understood domain.

After a brief overview of the underlying generic process ontology that we are using
(the PSL Ontology), we proceed through the different steps within the proposed method-
ology. The steps can be summarized as follows;

• First we need an axiomatization for the underlying domain ontology which enable
us to reason about changes in that domain. Section 3 introduces a definition which
gives a theory, called domain state ontology, equivalent to the domain ontology,
but in the signature of PSL ontology which allows to reason about change.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies310

• In the next step we characterize models of domain state ontology with respect to
its underlying domain. The key idea here is to associate activity occurrences and
their effects with mappings between models of the domain ontology (Section 4).

• Section 5 shows how special subsets of partial automorphisms (called scaffold)
can be employed to characterize mappings between models of the domain ontol-
ogy and hence to characterize activity occurrences that are associated with them.

• Section 6 describes certain properties of models of the underlying domain ontol-
ogy and illustrate how those properties along with the scaffolds of the models lead
to a classification theorem for primitive activities which ensures the complete-
ness of the domain process ontology. It is straightforward then to characterize and
axiomatize activity classes with respect to the classification theorem (Sections 7).

2. PSL Ontology

The PSL Ontology [2] is a modular first-order ontology that axiomatizes a set of intu-
itive semantic primitives that is adequate for describing the fundamental concepts of pro-
cesses. Two of the theories within the PSL Ontology play key roles in this paper; Tocctree

(theory of occurrence trees) and Tdisc state (theory of fluents and discrete change) 1.
Within the PSL Ontology, an occurrence tree Γ is a partially ordered set of activ-

ity occurrences, such that for a given set of activities, all discrete sequences of their oc-
currences are branches of the tree. An occurrence tree contains all occurrences of all
atomic activities; Because the tree is discrete, each activity occurrence in the tree has a
unique successor occurrence of each activity. Every sequence of activity occurrences has
an initial occurrence which is the root of an occurrence tree.

Within the PSL Ontology, the notion of state is represented by reified fluents. In-
tuitively, a change in state is captured by fluents that are either achieved or falsified by
an activity occurrence. Furthermore, a fluent can only be changed by the occurrence of
activities. Thus, if some fluent holds after an activity occurrence, but after an activity
occurrence later along the branch it is false, then an activity must occur at some point
between that changes the fluent. This also leads to the requirement that the fluents hold-
ing after an activity occurrence will be the same fluents that are prior to any successor
occurrence, since there cannot be an activity occurring between them.

Here is a brief definition for the relations in PSL that we will use in this paper:

• arboreal(o) denotes that activity occurrence o is an element of occurrence tree.
• prior(f, o) denotes that the fluent f holds before the activity occurrence o.
• holds(f, o) denotes that the fluent f holds after the activity occurrence o.
• achieves(o, f) ≡ ¬prior(f, o) ∧ holds(f, o).
• falsifies(o, f) ≡ prior(f, o) ∧ ¬holds(f, o).
• changes(o, f) ≡ achieves(o, f) ∨ falsifies(o, f).

3. Axiomatization of the Domain State Ontology

Many ontologies provide an axiomatization of some set of concepts independently of the
notion of change. For example, mereotopologies such as RCC [12] axiomatize notions

1We use the axiomatization of the PSL Ontology found at http://www.mel.nist.gov/psl/
psl-ontology/.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 311

of parthood and connectedness but there is no axiomatization for classes of activities that
change such relations. We will refer to such axiomatizations as domain ontologies. In
this paper we will use chain structures, adopted from [13], as the domain ontology. [13]
provided an axiomatization of chain structures Tchain

2 and proved that models of Tchain

are isomorphic to structures in the following class:

Definition 1 A structure L = 〈L, lst〉 is a chain structure iff

1. lst is isomorphic to a set of disjoint discrete linear orderings;
2. 〈x〉 ∈ minimal iff there is no y ∈ L such that 〈y,x〉 ∈ lst,
3. 〈x〉 ∈ maximal iff there is no y ∈ L such that 〈x,y〉 ∈ lst,
4. 〈x,y〉 ∈ cover iff 〈y,x〉 ∈ lst and there is no z ∈ L such that 〈y, z〉 ∈ lst and

〈z,x〉 ∈ lst,
5. 〈x,y〉 ∈ comparable iff 〈x,y〉 ∈ lst or 〈y,x〉 ∈ lst.

Beginning with the domain ontology, we specify an equivalent theory which will
allow us to reason about change.

Definition 2 State constraints are universal sentences containing only prior and
arboreal relations and a unique activity occurrence variable.

Figure 1 shows state constrains for Tchain. Definition 3 describes how to specify
state constrains and the corresponding domain state ontology for a domain ontology .

Definition 3 Let T be a domain ontology and D be a set of state constraints.
Let π : L(T) → L(D) be a bijection on the set of relation symbols in the signature
L(T) of T and the set of fluent symbols in the signature L(D) of D. Let Δ be the set of
sentences

(∀x1, ..., xn, o) pi(x1, ..., xn) ≡ prior(π(pi(x1, ..., xn)), o)
for each relation symbol pi(x1, ..., xn) in L(T).
Tpsl∪D is the domain state ontology for T iff Tpsl∪Δ∪T |= D and Tpsl∪Δ∪D |= T .

To specify state constrains for Tchain, we map the lst relation of the domain ontol-
ogy to the fluent lt using the translation definition

(∀x, y, o) lst(x, y) ≡ prior(lt(x, y), o)

The resulting theory Tstchain can be found in Figure 1.

Theorem 1 3 Tpsl ∪ Tstchain is the domain state ontology for Tchain.

The relationship between the domain ontology and the domain state ontology is
captured by the following result:

Theorem 2 Let T be a domain ontology and let D be a set of state constraints.
The domain state ontology for T is unique up to definably equivalence.
In the other words Tpsl ∪D is definably equivalent to Tpsl ∪ T .

2Axioms of Tchain can be found at http://stl.mie.utoronto.ca/colore/ordering/

chains.clif
3We omitted proofs for all theorems due to lack of space, but they can be found at:
http://www.cs.toronto.edu/˜bahar/chains/chains_partial_aut_proofs.pdf

B. Aameri / Using Partial Automorphisms to Design Process Ontologies312

(∀x, o) arboreal(o) ⊃ ¬prior(lt(x, x), o). (1)

(∀x, y, z, o) (arboreal(o) ∧ prior(lt(x, y), o) ∧ prior(lt(y, z), o)) ⊃ prior(lt(x, z), o). (2)

(∀x, y, z, o) (arboreal(o) ∧ prior(lt(x, y), o) ∧ prior(lt(x, z), o)) ⊃
(prior(lt(y, z), o) ∨ prior(lt(z, y), o) ∨ y = z). (3)

(∀x, y, z, o) (arboreal(o) ∧ prior(lt(y, x), o) ∧ prior(lt(z, x), o)) ⊃
(prior(lt(y, z), o) ∨ prior(lt(z, y), o) ∨ y = z). (4)

(∀x, o) (arboreal(o) ∧ ¬prior(minimal(x), o) ⊃ (∃y)(prior(cover(x, y), o))). (5)

(∀x, o) (arboreal(o) ∧ ¬prior(maximal(x), o) ⊃ (∃y)prior(cover(y, x), o)). (6)

(∀x, o) (prior(minimal(x), o) ≡ (arboreal(o) ∧ ¬(∃y)prior(lt(y, x), o))). (7)

(∀x, o) (prior(maximal(x), o) ≡ (arboreal(o) ∧ ¬(∃y)prior(lt(x, y), o))). (8)

(∀x, y, o) (prior(cover(x, y), o) ≡ (arboreal(o) ∧ prior(lt(y, x), o)∧
¬(∃z)(prior(lt(y, z), o) ∧ prior(lt(z, x), o)))). (9)

(∀x, y, o) (prior(comparable(x, y), o) ≡
(arboreal(o) ∧ (prior(lt(x, y), o) ∨ prior(lt(y, x), o)))). (10)

(∀o, x, y) prior(lt(x, y), o) ⊃ (prior(point(x), o) ∧ prior(point(y), o)). (11)

Figure 1. Axioms for the Chain State Ontology Tstchain.

4. Models of the Domain State Ontology

The next step in the design of the ontology focuses on characterizing models of domain
state ontology. We show that each state of a domain state ontology can be associated
with a model of its corresponding domain ontology, so changing state is equivalent to a
mapping from one model of the domain ontology to another. This property can be applied
in model-characterization of the domain state ontology.

To start, we use Theorems 2 and 1 to characterize models of Tstchain.

Definition 4 Let Mstchain 4 be the class of structures such that M ∈ Mstchain iff

1. there exists a model N of Tpsl with occurrence tree Γ such that N ⊂ M;
2. there exists a mapping μ : Γ→ Mchain such that

〈lt(x,y),o〉 ∈ priorM ⇔ 〈x,y〉 ∈ lstμ(o) and
〈point(x),o〉 ∈ priorM ⇔ 〈x〉 ∈ pointμ(o).

It is straightforward to prove the following representation theorem for Tstchain:

4We denote structures by calligraphic font: M,N , ... classes of structures by fraktur font: M,N, ... the
domain of a structure M by M , the extension of relation R in a structure M by 〈a1, . . . ,ai〉 ∈ RM, and
domain and range of a mapping ϕ by dom(ϕ) and im(ϕ).

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 313

Theorem 3 M ∈ Mstchain iff it is isomorphic to a model of Tstchain ∪ Tpsl.

In fact, this can be generalized to a characterization of the relationship between
models of any domain state ontology and its corresponding domain ontology:

Theorem 4 Let Tpsl ∪D be the domain state ontology for the domain ontology T .
M ∈ Mod(Tpsl ∪D) iff

1. N ⊂ M is a model of Tpsl with occurrence tree Γ;
2. there exists a mapping μ : Γ → Mod(T) such that for each relation

pi(x1, ...,xn) in the signature of T

〈π(pi(x1, ...,xn)),o〉 ∈ priorM ⇔ 〈x1, ...,xn〉 ∈ pi
μ(o)

3. there exists a mapping η : Γ → Mod(T) such that for each relation
pi(x1, ...,xn) in the signature of T

〈π(pi(x1, ...,xn)),o〉 ∈ holdsM ⇔ 〈x1, ...,xn〉 ∈ pi
η(o)5

Alternatively, we can consider the set of fluents (commonly referred to as the state)
associated with an activity occurrence:

Definition 5 Σ(o) = {f : 〈f ,o〉 ∈ prior} and Π(o) = {f : 〈f ,o〉 ∈ holds}

Since Σ(o) is isomorphic to a unique model μ(o) of T for any activity occurrence
o, a model T of Tpsl ∪D can therefore be characterized by an injection from the set of
states in T to the set of models of T .

5. Change and Partial Automorphisms

We will be defining classes of activities with respect to how their occurrences change or
preserve state.

Definition 6 A fluent f is changed by an activity occurrence o iff f ∈ Σ(o)⇔ f ∈ Π(o).
A fluent f is preserved by an activity occurrence o iff f ∈ Σ(o)⇔ f ∈ Π(o) 6.

As illustrated in the previous section, changing state within a domain state ontol-
ogy is equivalent to a mapping from one model of the corresponding domain ontology
to another So to characterize activity classes, we need a representation for the mappings
that can be used to characterize the fluents that are preserved by the corresponding ac-
tivity occurrences. In the trivial case, an activity occurrence o that does not change any
fluents satisfies Σ(o) = Π(o), and this corresponds to the identity mapping between the
corresponding models. Activity occurrences that have nontrivial effects correspond to
mappings between models that preserve some substructure of the models (i.e. the set of
fluents that do not change). To capture this idea, we use the following notion:

5PSL Ontology guarantees that if o2 is any successor occurrence of o1, then for all fluents f ,
prior(f ,o2) = holds(f ,o1) and so μ(o2) = η(o1).

6Note that in PSL, changes(o, f) iff prior(f ,o) ≡ ¬holds(f ,o).

B. Aameri / Using Partial Automorphisms to Design Process Ontologies314

Definition 7 Let M1,M2 be structures with the same signature.
An injective mapping ϕ such that dom(ϕ) ⊆ M1 and im(ϕ) ⊆ M2 is a partial

isomorphism iff

〈x1, . . . ,xn〉 ∈ RM1 iff 〈ϕ(x1), . . . , ϕ(xn)〉 ∈ RM2

for some relation R in the signature. A partial isomorphism ϕ : M → M is a partial
automorphism.

This definition of partial isomorphism is more general than the one proposed in [14],
which requires that the extensions of all relations in the signature be preserved by the
mapping.

For presenting mappings we use path notation introduced in [15]. Path notation rep-
resents a mapping as a sequence of elements so that if an element a is immediately be-
fore b, then α(a) = b. The sequence can end at any point either by a close parenthe-
sis or a square bracket. If it ends with a close parenthesis, then the last element of the
sequence is mapped to the first. Otherwise it means that the last element is not in the

domain of the mapping. For example, α =

(
c1 c2 c3
c2 c3 c1

)
is presented by path notation as

α = (c1, c2, c3), while α′ =
(
c1 c2
c2 c3

)
is presented as α′ = (c1, c2, c3]. (c1](c2](c3] and

(c1)(c2)(c3) denote empty and identity mappings respectively.
As an example of a partial isomorphism, suppose that an activity occurrence o has

three successor occurrences in the occurrence tree Γ. Let the chain structures depicted
in Figure 2(c) be models of Tchain corresponding to the occurrences of o,o1,o2 and
o3. We can see that the substructure of η(o) that is induced by the set {c1, c2} is also
a substructure of the models η(o1), η(o2) and η(o3). Note that here η(o) = μ(o1) =
μ(o2) = μ(o3). Intuitively, this substructure is invariant under the partial isomorphisms
(i.e. preserved by mappings between the models) and corresponds to fluents that are not
changed by the successors of o.

We can generalize this discussion with the following:

Lemma 1 Let M be a model of a domain state ontology.
For any activity occurrence o ∈ Γ, let PIso(μ(o), η(o)) be the set of partial iso-

morphisms between the models μ(o) and η(o).
For any relation p(x1, ...,xn) in the signature of the domain ontology, the flu-

ent π(p(x1, ...,xn)) is preserved by the activity occurrence o iff there exists ϕ ∈
PIso(μ(o), η(o)) such that x1, ...,xn ∈ dom(ϕ) ∩ im(ϕ).

For a particular element in the occurrence tree, there exists a unique set of partial
isomorphisms; however, if we are to define classes of activities with respect to their oc-
currences, we need to characterize all possible partial isomorphisms. One approach is to
characterize the invariant substructures by partial automorphisms, which are equivalent
to isomorphisms between substructures of μ(o). Whereas automorphisms describe the
global symmetries of a structure, partial automorphisms describe the local symmetries;
they are especially useful in cases where a structure does not have any nontrivial au-
tomorphisms. For example, one partial automorphism of the model in Figure 2(c) that
corresponds to o2 is (c1)(c2)(c3](c4].

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 315

c3

μ(o1) : c2 η(o1) : c2

c1 c1 c3

(a)

c4

c3

μ(o2) : c2

c1 c5

η(o2) : c2 c4

c1 c3 c5

(b)

c2 c4

η(o1) : c1 c3

c4 c2

c3 c1

η(o) : c2

a3

��

a1

��

a2
�� η(o2) : c4

c1 c3

c2 c3

η(o3) : c1 c4

(c)

Figure 2. Examples of chain transform processes. Vertical orders represent lt fluents; an element of a chain
ci is on another element cj iff lt(cj , ci). μ(o) denotes the model that is associated with activity occurrence o
prior to its occurrence and η(o) denotes the model that is associated with o after its occurrence.

The set of all partial automorphisms of a structure M forms a monoid [11], denoted
by PAut(M). Partial automorphisms have the advantage that they have been extensively
studied and formalized for a wide range of mathematical structures [16,17,18,19]. In
particular, the monoid of partial automorphisms of a chain structure is known as IOn;
representation and structure theorems for this class of monoids are discussed in [10].

Definition 8 Let M be a model of a domain state ontology.
For any activity occurrence o ∈ Γ, PIso(μ(o), η(o)) is the subset of all partial

isomorphisms of μ(o) and η(o)) such that PIso(μ(o), η(o)) ⊆ PAut(μ(o)).

The intuition is that for any model M of the domain ontology, PAut(M) encodes the
information about all possible mappings that preserve substructures; by the correspon-
dence with activity occurrences, this is equivalent to the specification of all possible ways
in which an activity occurrence can change state. Thus, the monoid PAut(μ(o)) encodes
all of the ways that o changes and preserves fluents. On the other hand, PIso(μ(o), η(o))
captures the actual way in which o changes and preserves fluents. Later in the paper, we
will define classes of activities with respect to PIso(μ(o), η(o)); the completeness of
the classification of activities is characterized with respect to PAut(μ(o)).

If we consider the models in Figure 2(a), then we have

PAut(μ(o)) = {(c1](c2](c3], (c1)(c2](c3], (c1](c2)(c3], (c1](c2](c3), (c1, c2](c3],

(c1, c3](c2], (c1](c2, c3], (c2, c1](c3], (c3, c1](c2], (c3, c2](c1],

(c1)(c2)(c3], (c1)(c2](c3), (c1](c2)(c3), (c1)(c2, c3], (c1, c2](c3),

(c1)(c3, c2], (c2, c1](c3), (c1, c2, c3], (c3, c2, c1], (c1)(c2)(c3)},

The subset of nontrivial mappings which can be associated with o is
PIso(μ(o, η(o)) = {(c1](c2](c3], (c1](c2](c3), (c1)(c2)(c3]}.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies316

Notice that PIso(μ(o), η(o)) is union of two submonoids α1, α2, of PAut(μ(o)),
where α1 = {(c1](c2](c3], (c1)(c2)(c3]} and α2 = {(c1](c2](c3], (c1](c2](c3)}.

We therefore need some way of extracting the information about invariant substruc-
tures of the model μ(o) from properties of the monoid PAut(μ(o)) so that we can char-
acterize the effects of the activity occurrence o. Unfortunately, we cannot use the naive
association of individual partial automorphisms or even specific submonoids with ac-
tivity occurrences. In fact, the preceding example shows that we need to associate each
activity occurrence with a set of submonoids of PAut(μ(o)).

One direction is suggested by the following lemma from [11]:

Lemma 2 Let ε(S) be the set of idempotents7 in some semigroup S. For any e ∈ ε(S),
the set eSe is a submonoid of S with e as the identity element.

In other words, if we are looking for submonoids that are associated with an activity
occurrence o, we should find the identity mappings over the substructures of μ(o) that
remain invariant after o.

Note that some activity occurrences can be associated with more than one idem-
potent mapping. For example in Figure 2(b) both {c1, c2} and {c3, c4} define invari-
ant substructures. So the idempotent mapping can be either e1 = (c1)(c2)(c3](c4](c5)
or e2 = (c1](c2](c3)(c4)(c5). By the following lemma (again from [11]), each of these
idempotents corresponds to a different submonoid of PAut(μ(o)).

We know that each idempotent specifies an invariant substructure of μ(o); this
Lemma tells us that maximal sets of idempotents correspond to maximal invariant sub-
structures.

For example, with the structures given in Figure 2(b) we have the maximal idem-
potents e11 = (1)(2)(3](4](5), e12 = (1](2](3)(4)(5], e21 = (1](2](3)(4)(5), e22 =

(1)(2)(3](4](5], and the corresponding submonoid of PIso(μ(o), η(o))
G11 = {(1](2](3](4](5], (1, 2](3](4](5), (2, 1](3](4](5), (1)(2)(3](4](5)},
G12 = {(1](2](3](4](5], (1](2](3)(4)(5]},
G21 = {(1](2](3](4](5], (1](2](3, 4](5), (1](2](4, 3](5), (1](2](3)(4)(5)},
G22 = {(1](2](3](4](5], (1)(2)(3](4](5]}.
This example leads to the following notion:

Definition 9 Let M be a model of a domain state ontology.
A scaffold GR

o of an activity occurrence o ∈ Γ is a set consisting of sets of sub-
monoids of PIso(μ(o), η(o)) such that for all Gi ∈ GR

o

1. For all Gij ∈ Gi,
Gij = (eijPAut(μ(o))eij)
such that eij is the identity element of Gij;

2. The identity element eij of each Gij ∈ Gi has a maximal domain; that is, there is
no other identity mapping e′ that satisfies property 1 and dom(eij) ⊂ dom(e′);

3. If Gi = {Gi1, . . . , Gim} then
dom(ei1) ∪ · · · ∪ dom(eim) ⊆ dom(μ(o)) and
dom(ei1) ∩ · · · ∩ dom(eim) = ∅.

7An idempotent in a monoid is an element x such that (x · x) = x.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 317

Property 1 ensures that elements in GR
o are the maximal submonoids associated with

PAut(μ(o)). Note that GR
o is defined as a set of sets of submonoids because an activity

occurrence can be specified with more than one set of idempotents, and therefore, with
more than one set of submonoids (such as the one shown in Figure 2(b)).

Each idempotent in a submonoid in the scaffold GR
o specifies an invariant substruc-

ture of μ(o); those which are not a subset of any other idempotent specify the maxi-
mal invariant substructures. In addition, condition 2 enforces the idempotents of a set
(and consequently their corresponding substructures) to be disjoint, while condition 3
guarantees that they cover the domain of μ(o). In other words, a set of corresponding
idempotents of μ(o), I = {e1, . . . , en}, breaks it into n disjoint invariant substructures
S1, . . . ,Sn while S1 ∪ · · · ∪ Sn = μ(o).

For the preceding example, we have Glt
μ(o) = {{G11, G12}, {G21, G22}} and

Gcomparable
μ(o) = {{G11, G12}, {G21, G22}}.

Theorem 5 Let M be a model of a domain state ontology Tpsl ∪D.
For any activity occurrence o ∈ Γ and each relation R in the signature of Tpsl ∪D,

there exists a unique scaffold GR
o .

Theorem 6 illustrates the connection between the changes that an activity occurrence
makes in the model of the domain ontology and the set of submonoids that are associated
with it.

Theorem 6 Let M be a model of a domain state ontology Tpsl ∪ D. Let Gr
o be the

scaffold for the activity occurrence o ∈ Γ and the relation r in the signature of Tpsl ∪D.
For all Gi ∈ G ∈ Gr

o, 〈o, r(x1, . . . ,xn)〉 /∈ changesM iff x1, . . . ,xn ∈ dom(IGi
).

In simple words, a submonoid in a scaffold Gr
o (associated with an activity occur-

rence o) only contains elements that o preserves fluent r between them.

6. Classifying Activities

For any two activity occurrences o1,o2 in a model of a domain state ontology such that
μ(o1) ∼= μ(o2) (∼= denotes isomorphism), the models η(o1) and η(o2) are isomorphic
iff o1 and o2 achieve, falsify, and preserve the same types of fluents. In the other words, if
η(o1) ∼= η(o2), then there should be at least one class of activities that a1 belongs to and
a2 does not (a1 and a2 are respective types of activities for o1 and o2). Consequently,
the axiomatization of the activity classes is based on the criterion that if η(o1) ∼= η(o2),
then o1 and o2 are occurrences of activities in the same class. In the next phase of
the methodology for designing the domain process ontology, we prove a classification
theorem for activities by identifying the minimal set of scaffolds for occurrences o1 and
o2 (of the same activity) which are needed to guarantee that the two models η(o1) and
η(o2) are isomorphic.

Since the scaffolds for all primitive relations in the domain ontology must always
be included, it is primarily the defined relations that are the focus of the classification
theorem. In the case of chains, we have the following:

B. Aameri / Using Partial Automorphisms to Design Process Ontologies318

Theorem 7 Let M be a model of a domain state ontology.
For any activity occurrences o1,o2 ∈ Γ with μ(o1) ∼= μ(o2), if Gpoint

o1
= Gpoint

o2
,

Glt
o1
= Glt

o2
and, Gcomparable

o1
= Gcomparable

o2
, then η(o1) ∼= η(o2).

Intuitively, besides creating or destroying points, there are three ways to change a
chain structure. Figure 2(c) shows the possible changes with respect to the point c4.
The activity occurrence o1 does not change the relation between c3 and c4, but they are
no longer comparable with c1 and c2. The activity occurrences o2 and o3 change the lt
relation for c4 with c1, c2 and c3; however, while they are still comparable with respect
to o2, c3 and c4 are not comparable with c1 and c2 with respect to o3. It is easy to see
from this example that in addition to the primitive relations of Tstchain (i.e. point and lt),
the defined relation comparable must also be considered in characterization of the Chain
Transform Process Ontology.

Once we know the minimal set of scaffolds needed to characterize isomorphic mod-
els, the next step is to use the relationships between the different scaffolds to provide a
model-theoretic definition for each class of activities.

For the Chain Transform Process Ontology, we have the following:

Lemma 3 For each Gi ∈ Glt
o , there exists Hj ∈ Gcomparable

o such that ε(Gi) ⊆ ε(Hj).

Theorem 7 and Lemma 3 lead to the following definition for the intended models of
the Chain Transform Process Ontology. Each class of activities is defined with respect to
properties of the scaffolds.

Definition 10 Mchainprocess is the class of structures such that M ∈ Mchainprocess iff

1. there exists N ∈ Mstchain such that N ⊂ M,
2. for every o ∈ Γ, Gpoint

o = I or Glt
o = I,

3. 〈a〉 ∈ preserve point iff for every occurrence o of the activity a, Gpoint
o = I,

4. 〈a〉 ∈ change point iff for every occurrence o of the activity a, Gpoint
o = I,

5. 〈a〉 ∈ create point iff for every occurrence o of the activity a, Gpoint
o = I and

pointμ(o) ⊂ pointη(o),
6. 〈a〉 ∈ destroy point iff for every occurrence o of the activity a, Gpoint

o = I
and pointη(o) ⊂ pointμ(o),

7. 〈a〉 ∈ newchain iff for every occurrence o of the activity a, for each G ∈ Glt
o

there exists H ∈ Gcomparable
o such that ε(G) = ε(H),

8. 〈a〉 ∈ make chain iff for every occurrence o of the activity a, 〈a〉 ∈
newchain and comparableμ(o) ⊂ comparableη(o),

9. 〈a〉 ∈ break chain iff for every occurrence o of the activity a, 〈a〉 ∈
newchain and comparableη(o) ⊂ comparableμ(o),

10. 〈a〉 ∈ rearrange iff for every occurrence o of the activity a, for each G ∈ Glt
o

there exists H ∈ Gcomparable
o such that ε(G) ⊂ ε(H),

where I = {{Iμ(o)}}.

The classes preserve point and change point are defined with respect to
whether or not the point fluent is changed. The two subclasses create point and
destroy point are defined with respect to how the fluent is changed (i.e. either
achieved or falsified). This is also how the subclasses make chain and break chain
of the class newchain are defined.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 319

((∀o) arboreal(o) ⊃ ((∃x, y)changes(o, lt(x, y)) ∨ (∃x)changes(o, point(x))). (12)

(∀a) preserve point(a) ≡ ((∀o, x) occurrence of(o, a) ⊃ ¬changes(o, point(x))). (13)

(∀a) change point(a) ≡ ((∀o) occurrence of(o, a) ⊃ (∃x) changes(o, point(x))). (14)

(∀a) create point(a) ≡ ((∀o) occurrence of(o, a) ⊃ (∃x) achieves(o, point(x))). (15)

(∀a) destroy point(a) ≡ ((∀o) occurrence of(o, a) ⊃ (∃x) falsifies(o, point(x))). (16)

(∀a) newchain(a) ≡ ((∀o, x, y) (occurrence of(o, a) ∧ changes(o, lt(x, y))) ⊃
changes(o, comparable(x, y))). (17)

(∀a)make chain(a) ≡ ((∀o, x, y) (occurrence of(o, a) ∧ achieves(o, lt(x, y))) ⊃
achieves(o, comparable(x, y))). (18)

(∀a) break chain(a) ≡ ((∀o, x, y) (occurrence of(o, a) ∧ falsifies(o, lt(x, y))) ⊃
falsifies(o, comparable(x, y))). (19)

(∀a) rearrange(a) ≡ ((∀o, x, y) (occurrence of(o, a) ∧ changes(o, lt(x, y))) ⊃
¬changes(o, comparable(x, y))). (20)

Figure 3. Axioms for Tchainprocess.

7. Axiomatization of Activity Classes

In the final step of methodology we axiomatize the activity classes specified in the in-
tended models. The axioms in Figure 3 constitute the Chain Transform Process Ontology
Tchainprocess that axiomatizes the class of structures Mchainprocess. Axiom 12 guaran-
tees that all legal activity occurrences change some fluent (this corresponds to Condition
2 in Definition 10) Axioms 13, 15 and 16 define classes of activities that preserve, cre-
ate or destroy points. Axiom 17 defines class of activities that change the comparability
of two points in addition to their lt relation, while Axiom 20 defines activities which
preserve the comparable relation.

Theorem 8 is the representation theorem for the Chain Transform ontology.

Theorem 8 M is a model of Tchainprocess ∪ Tstchain ∪ Tpsl iff it is isomorphic to a
structure in Mchainprocess.

8. Relationship to Basic Action Theories

So far we discussed about building a process ontology based an existing domain ontology
and presenting Chain Transform ontology as an example. Using this example, we show
that models of the process ontology can be applied to evaluate the ontologies are used in
basic action theory for similar domains.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies320

The following theorem shows that move and moveToTable actions in Reiter’s axiom-
atization of Blocks World [3] are newchain activities.

Theorem 9 Suppose ΣBW be the set of successor state axioms for Reiter’s axiomatiza-
tion of Blocks World. Then we have:

Tchainprocess ∪ Tstchain ∪ Tpsl ∪ ΣBW |=

(∀x, y)newchain(move(x, y)) ∧ (∀z)newchain(moveToTable(z)).

Note that in our approach, the effects of an activity cannot violate any of the axioms of
the domain ontology. For example, no activity can have the effect of splitting an element
in a chain. As a result, precondition axioms are simply restrictions on the set of possible
activities that are allowed to occur in a particular application.

9. Recap

The methodology for the design and verification of domain-specific process ontologies
for a given domain ontology can be summarized as follows:

• specify the axiomatization of a domain state ontology that is definably equivalent
to the domain ontology;

• show that the models of the domain state ontology are characterized by an injec-
tive mapping between the states in a model of the domain state ontology and the
models of the domain ontology;

• characterize models of the domain process ontology with respect to submonoids
of partial automorphisms of models of the domain ontology;

• prove a classification theorem for primitive activities, which implies the com-
pleteness of the domain process ontology, with respect to submonoids of partial
automorphisms of models of the domain ontology;

• axiomatize classes of primitive activities with respect to the classification theorem
and prove the representation theorem for the resulted taxonomy which implies
correctness of the domain process ontology.

10. Summary and Future Work

In this paper we have introduced a general methodology for designing and verifying pro-
cess ontologies with respect to the partial automorphisms of models of their underlying
domain ontology. For any structure in some class of structures, we can define the unique
monoid of partial automorphisms. From this monoid, we can define all possible activi-
ties and their effects. The completeness of the axioms is determined by identifying the
set of activity classes using sets of submonoids of partial automorphisms. The correct-
ness of the axioms is determined by examining whether they satisfy relations between
submonoid of partial automorphisms.

The methodology can be applied either to design new process ontologies for existing
domain ontologies or to characterize and evaluate existing process ontologies. It is appli-
cable in any domain that has a mathematical characterization. If a model-characterization

B. Aameri / Using Partial Automorphisms to Design Process Ontologies 321

for the domain exists, effect of each activity can be represented with a partial automor-
phism and the set of all partial automorphisms of a structure forms a monoid.

Our next step will be to explore process ontologies that use the mereotopology of
RCC as the domain ontology. Since the models of RCC can be represented by boolean
lattices, we can use existing characterizations of the partial automorphisms of boolean
lattices to specify axiomatizations for domain process ontologies such as Conceptual
Neighborhoods [20].

The approach proposed in this paper is used to axiomatize different classes of prim-
itive activities within a specific domain. Another direction for future work will be to use
the theory of complex activities within the PSL Ontology to characterize the sets of plans
that can be specified using the domain process ontologies.

References

[1] A. Galton. Experience and History: Processes and their Relation to Events. Journal of Logic and
Computation, 18(3):323–340, 2008.

[2] M. Gruninger. Ontology of the Process Specification Language. In S. Staab and R. Studer, editors,
Handbook on Ontologies in Information Systems. Springer-Verlag, 2003.

[3] R. Reiter. Knowledge in Action:Logical Foundations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, Cambridge,MA, 2001.

[4] M. Gruninger, T. Hahmann, A. Hashemi, and D. Ong. Ontology Verification with Repositories. In Proc.
of the 6th FOIS Int. Conference, pages 317–330, Toronto,Canada, 2010. IOS Press.

[5] F. Dylla and R. Moratz. Exploiting Qualitative Spatial Neighborhoods in the Situation Calculus. In
Spatial Cognition IV, LNAI 3343, pages 304–322, Berlin,Germany, 2004. Springer-Verlag.

[6] C. Vidal and A. Rodriguez. A Logical Approach for Modeling Spatio-temporal Objects and Events. In
Proc. of ER Workshops, LNCS 3770, pages 218–227, Berlin,Germany, 2005. Springer-Verlag.

[7] P. Grenon and B. Smith. SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cognition and
Computation, 4(1):69–104, 2004.

[8] M. Bhatt and S. Loke. Modelling Dynamic Spatial Systems in the Situation Calculus. Spatial Cognition
and Computation, 8(1):86–130, 2008.

[9] Y. Gu and M. Soutchanski. Reasoning about large taxonomies of actions. In Proc. 23rd Conf. on
Artificial intelligence (AAAI-08), pages 931–937, 2008.

[10] O. Ganyushkin and V. Mazorchuk. On the Structure of IOn. Semigroup Forum, 66(3):455–483, 2008.
[11] O. Ganyushkin and V. Mazorchuk. Classical Finite Transformation Semigroups: an Introduction.

Springer, UK, 2009.
[12] D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In Proc. 3rd Int.

Conf. on Knowledge Representation, pages 165–176, Cambridge, MA, 1992. Morgan Kaufmann.
[13] S. Cook and Y. Liu. A Complete Axiomatization for Blocks World. Journal of Logic and Computation,

13(4):581–594, 2002.
[14] H.D. Ebbinghaus and J. Flum. Finite Model Theory, Second Edition. Springer, 1999.
[15] S. Lipscomb. Symmetric Inverse Semigroups. In Mathematical Surveys and Monographs, volume 46.

American Math. Society, Providence,RI, 1996.
[16] V. H. Fernandes. The Monoid of All Injective Orientation Preserving Partial Transformations on a Finite

Chain. Communications in Algebra, 28(7):3401–3426, 2000.
[17] V. H. Fernandes. The Monoid of All Injective Order Preserving Partial Transformations on a Finite

Chain. Semigroup Forum, 62(2):178–204, 2001.
[18] J. Chubba, V. S. Harizanov, A. S. Morozov, S. Pingrey, and E. Uffermanc. Partial Automorphism

Semigroups. Annals of Pure and Applied Logic, 156(2-3):245–258, 2008.
[19] M. Rubin. On the Automorphism Groups of Countable Boolean Algebras. Israel Journal of Mathemat-

ics, 35(1-2):151–170, 1980.
[20] C. Freksa. Conceptual Neighborhood and its role in temporal and spatial reasoning. In In Proc. of the

IMACS Workshop, pages 181–187, Toulouse, France, 1991b. North-Holland.

B. Aameri / Using Partial Automorphisms to Design Process Ontologies322

