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Abstract. Temporal encoding schemes using RDF and OWL are often
plagued by a massive proliferation of useless “container” objects. Rea-
soning and querying with such representations is extremely complex, ex-
pensive, and error-prone. We present a temporal extension of the Hayes
and ter Horst entailment rules for RDFS and OWL [2,7] which apply
to the TBox, RBox, and ABox of an ontology in order to make implicit
knowledge explicit. The extension requires only some lightweight forms
of reasoning and is realized by adding two further temporal arguments,
thus replacing a triple by a quintuple. The approach has been imple-
mented in the forward chaining engine HFC. Our decision was moti-
vated by experiences we have gained in former projects that have dealt
with the representation of changing information over time in description
logic ontologies. In order to verify the superiority of the approach, we
compare the quintuple-based approach with a semantic-preserving en-
coding scheme for N-ary relations through RDF triples, as proposed by
the Semantic Web Best Practices Group of the W3C. The comparison
is carried out on a theoretical as well as on a practical level, both in
the space and the time domain when computing the deductive closure
w.r.t. the triple- and quintuple-based temporal entailment rules.

1. Introduction

Representing temporally-changing information becomes increasingly important
for reasoning and query services defined on top of RDF and OWL, for practi-
cal applications such as business intelligence in particular, and for the Seman-
tic Web/Web 2.0 in general. Extending binary OWL ABox relation instances or
RDF triples with further, not only temporal arguments translates into a massive
proliferation of useless “container” objects. Reasoning and querying with such
representations is extremely complex, expensive, and error-prone.

1This work and the implementation of HFC started in 2007 when I worked for the EU-
funded project MUSING (2006–2010; FP6 IST 27097). Writing up this paper and performing the
measurements was supported by the MONNET project (monnet-project.eu; FP7 ICT 248458). I
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In this paper, we critically compare two encoding schemes for temporally-
changing information in RDF and OWL. The first one conservatively extends the
RDF triple model towards a general flat quintuple representation, whereas the
second approach utilizes W3C’s N-ary relations proposal in RDF, as suggested
by the Semantic Web Best Practices Group [3]. In order to present compara-
ble measurements for the two approaches, we have used the rule-based forward
chainer HFC that we have developed over the last years which is comparable to
popular engines, such as Jena or OWLIM. Concerning the runtime during “deep”
reasoning (e.g., deductive closure computation), our measurements have shown
that a general tuple-based approach can easily outperform a triple-based encod-
ing by several orders of magnitude, depending on the size of the ABox and the
complexity of the entailment rules (see Figure 2 and discussion in Section 5.2).

In the next section, we present proposals which are somewhat related to the
problem described in this paper. After that, we investigate the memory require-
ments of the two proposals for simply storing a temporal fact. We then outline our
approach by presenting the extended entailment rules for RDFS and the OWL
Horst dialect. This section also contains a paragraph where we argue that the
theoretical results from [7] do hold for our setting as well. Not only do we come
up with an implemented set of entailment rules for our approach, but also with a
semantic-preserving set of rules using the N-ary relation proposal of W3C in or-
der to guarantee comparable measurements. We finally present numbers, showing
that our approach makes a huge difference when it comes to the materialization
of implicit knowledge during temporal entailment reasoning.

2. Related Approaches

In this section, we relate our approach to already existing frameworks.

2.1. Temporal Databases

Temporal databases started somewhat delayed with the development of relational
databases and logic programming. With the development and practical applica-
tion of SQL, many people realized the need to add temporal information to en-
tries in database tables [6]. Temporal databases distinguish between valid time
(the interval in which a fact is true) and transaction time (the time when the
database transaction happens). Valid time admits right-open intervals, and in
principle, a left bound is also possible. Our approach to follow is much in the
spirit of valid time, except that it comes with rules operating over tuples of the
database (ABox) in order to support RDFS- and OWL-based reasoning, as well
as providing domain-dependent rules.

2.2. Temporal Description Logic

Temporal aspects in description logics have been addressed in the past by various
forms of Temporal description logics (TDLs). Very often, TDLs are constructed
as a combination of a standard description logic (e.g., ALC) with a standard tem-
poral logic (e.g., LTL); see [5]. The usual interpretation I for concepts, roles, and
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individuals is replaced by a temporal interpretation � that extends the denota-
tion by a further temporal argument (usually a natural number), interpreted as
a time point . Alternatively, a temporal interpretation � can also be defined as
an infinite sequence 〈�(i)〉i≥0 of non-temporal interpretations �(i) (worlds, situ-
ations), sharing the same domain. For instance, (n, john�,mary�) ∈ marriedWith�

means that at time n, (john,mary) is an instance of marriedWith. An important
variant of TDLs then extends ABox formulae by adding the standard LTL modal
operators. For instance, FScrap(mycar) means that there will be a time n, when
my car is scrapped, and for m ≥ n, (m,mycar�) ∈ Scrap� is the case.

Unfortunately, we have experienced in many projects that an instant-based
approach is not what people want: information extraction from natural language
texts, for instance, is best couched in an interval-based approach using (potentially
underspecified) calendar time, and not through modal operators and a hidden
temporal dimension. To the best of our knowledge, we are not aware of any
implemented TDL-based reasoner for temporal ABoxes.

2.3. Approaches Staying Inside RDF

Several well-known proposals have been presented in the literature to equip (bi-
nary) relation instances with time (a discussion can be found in [4]):

1. use a meta-logical predicate;
2. reify the original relations;
3. wrap range arguments [3];
4. encode a perdurantist/4D view [8];
5. interpret individuals as time slices [4];

(1.), as used, e.g., in the situation calculus, requires the original relation to
be reformulated as a function. However, (1.) is outside the expressive means of
OWL, but can at least be encoded in RDF by reifying the atemporal fact using a
new individual that is related to its temporal extent through the holds predicate.
The proposals (2.)–(5.) have already been implemented in OWL. Approach (3.)
has been proposed by the W3C Semantic Web Best Practices Group to equip
binary relations with further arguments without leaving the well-known RDF
model, thus can clearly be used to add temporal information as a special case.
It is worth noting that (2.)–(4.) enforce a knowledge engineer to rewrite a non-
temporal ontology, whereas (5.) marries arbitrary ontologies with time by intro-
ducing perdurants that possess time slices (the original individuals) onto which
a temporal extent is defined. As a consequence of using RDF triples, or equiva-
lently, by sticking to binary relation instances, all these approaches end up in a
massive proliferation of useless “container” objects. Reasoning and querying with
such representations is extremely complex, expensive, and error-prone. It is worth
noting that all the above approaches invalidate ordinary OWL reasoning!

In the following, we will compare approach (3.) with the one we find more
promising by simply adding the temporal extent directly, viz., quintuples. To the
best of our knowledge, although (2.)–(5.) have been used to store information that
changes over time, nobody has extended the standard Hayes/ter Horst entailment
rules to reason over time. We will do so for (3.) in order to guarantee that the
measurements at the end of our paper are comparable.
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3. Memory Considerations

Within this chapter, we will count how many bytes, individuals, and triples/tuples
are needed to represent a relational fluent (i.e., a fact whose truth value changes
over time), encoded both as a quintuple, as well as a set of triples using W3C’s
N-ary relation proposal [3]. In the following, we will restrict ourself to quaternary
relations p ⊆ D × R × T × T , where T is used to describe the starting and
ending point of a fluent. Thus a quaternary diachronic relation instance p(d, r, s, e)
encodes a truth value for p(d, r) within the temporal interval [s, e].

3.1. Quintuples

A binary relation, such as worksFor between a person p of type Person and a
company c of type Company becomes a quaternary relation with further temporal
arguments s and e:

worksFor(p, c) �−→ worksFor(p, c, s, e)

Unfortunately, OWL and description logic (DL) in general only support unary
(classes) and binary relations (properties) in order to guarantee decidability of
the usual inference problems. Thus forward chainers (such as OWLIM and Jena)
as well as tableaux reasoners (e.g., Racer or Pellet) are unable to handle such
descriptions.

The quaternary relation instance is represented as a tuple in HFC by an
extension of the plain N-Triples format [1]:

p <worksFor> c s e .

This tuple consists of 5 elements/arguments and requires (at least) 20 (= 5 ∗
4) bytes, assuming an int[] representation with 4 byte integers. Using integer
arrays is a common way to represent triples/tuples internally, since the external
representation of URIs and XSD atoms needs to be addressed only during input
and output.

Overall, we obtain 1 object (the integer array) to represent the whole tuple.
This last number is very important, since it is desirable to access information di-
rectly in a semantic repository, instead of “fiddling” around with helper structures
(container objects) that blow up the memory. In addition, the overall number
of elements is equally important, since triple repositories usually build up large
index structures to efficiently access all those triples that match a specific element
at a certain position in a triple.

3.2. W3C’s N-ary Relations

Wrapping the range arguments of a relation instance, i.e., grouping them in a
new object, allows us to keep the original relation name, although the approach
requires to rewrite the original ontology:

worksFor(p, c, s, e) �−→ ∃o .worksFor(p, o) ∧
type(o,CompanyTime) ∧ company(o, c) ∧ starts(o, s) ∧ ends(o, e)

H.-U. Krieger / A Temporal Extension of the Hayes/ter Horst Entailment Rules326



A new object (o), a new class (CompanyTime), and new accessors (company,
starts, ends) need to be introduced. W3C suggests this obvious pattern to be used
to encode arbitrary N-ary relations [3]. Instead of defining a new class for each
range type of the original relation, one might alternatively define (as we do) a
general class, say RangePlusTime, plus three accessing properties value, starts, and
ends, in order to avoid a reduplication of the original class hierarchy:

p <worksFor> o .

o <rdf:type> <nary:RangePlusTime> .

o <nary:value> c .

o <nary:starts> s .

o <nary:ends> e .

Overall, 5 triples translate into 15 (= 5 ∗ 3) elements or 60 (= 5 ∗ 12) bytes. This
approach introduces a brand-new individual o (a blank node) which turns out to
be problematic, since it might lead to a non-terminating closure computation (cf.
section 4.5).

4. Our Approach

As outlined above, we will extend the Hayes-/ter Horst-style entailment rules
by a temporal dimension. Thus, in our case, we replace an RDF triple by a
quintuple, since the starting and ending time of a “temporalized” fact are encoded
as separate arguments.

In a certain sense, we are still dealing with RDF triples in case we are not
interested in the temporal extent of a fact or in case the temporal information
is underspecified or even unspecified. So, speaking in terms of RDF, the first
argument of a quintuple must come from the domain of the predicate (second
argument), and the third argument is required to fall into the range.

In addition, certain RDF triples still remain triples, since we only extend
information from the ABox of an ontology—we will not equip TBox and RBox
information with a temporal extension (even though this would be possible), say,
that the subtype relationship between two classes only holds for some period of
time or that a URI reference should be regarded as a property at time period S
and as a class at a different time T . Thus, axioms staying in the TBox and RBox
of an ontology are regarded to be universally true.

From a commonsense viewpoint, we also exclude identification statements
between individuals (owl:sameAs) to be extended by a temporal dimension—once
individuals have been identified, it is assumed that they are identical for their
whole lifetime (they do not fall apart later).

However, typing information (rdf:type) is usually assigned a temporal dura-
tion, due to the fact that people often encode binary relation instances through
class membership. For instance,

(car, red) : hasColor

might equally be represented as

car: Red

whereas Red refers to the class of objects having color red.
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4.1. What this Paper is Not About: Shortfalls

Several points are worth mentioning here. Firstly, we are not dealing here with
duration time in order to resolve expressions like Monday or 20 days against
valid time, when further information comes in. This needs to be handled by a
richer temporal ontology and temporal arithmetic. Secondly, temporal quantifi-
cation, such as in four hours every week , is beyond the expressive means of our
approach. Thirdly, even though underspecified time is handled by our implemen-
tation through wildcards in the XSD dateTime format (e.g., year missing in Over
New Year’s Eve, I have visited the Eiffel Tower), we do not focus on this here. The
solution requires to make certain rule tests sensitive towards the fact that time
is now only partially ordered. These tests then return true, false, or don’t-know ,
whereas only true indicates that the test succeeds, leading to the instantiation
of the RHS of the rule. Fourthly, coalescing temporal information (i.e., building
larger intervals from overlapping parts) should be addressed in custom rules and
should not be regarded as part of the RDFS/OWL rule set, since this functional-
ity depends on the (semantic) nature of predicates and the assumption whether
temporal intervals are convex or not. Finally, certain temporal inferences such as
p(�x, s, t) entails p(�x, s′, t′) in case s ≤ s′ ≤ t′ ≤ t should not be handled in the
below rules, since termination of the computation of the deductive closure is no
longer guaranteed. Such information can only be obtained on the query level. It
is worth noting that such entailments assume (as we do) that temporal intervals
are convex, i.e., contain no “holes” (this is, however, not relevant for this paper).

4.2. Metric Linear Time

The rules below assume that the temporal measuring system is based on a one-
dimensional metric linear time, so that we can compare starting/ending points,
using operators, such as <, or pick out input arguments in aggregates, using min
or max . We are neutral as to whether time is dense or discrete, or whether the
metric uses real, rational, or natural numbers. These decisions do not change the
effects of rules, since the predicates and aggregates that are used in the entailment
rules below are independent of the underlying metric. In the implementation of
HFC, long integers are used to encode milli or even nano seconds w.r.t. a fixed
starting point. Alternatively, the XSD dateTime format can be used which provides
an arbitrarily fine precision, if needed.

4.3. Extended Entailment Rules

In the following, we describe a temporal extension of the entailment rules from
[2] and [7]. The rules are written in the concrete syntax of HFC so they slightly
differ from [2] and [7] (who also use slightly different notations).

Due to space limitations, we are only able to display four principal distinct
extended entailment rules of the fully implemented set of 30 rules. We further note
that some of the original rules have not been extended by temporal arguments
(e.g., rdfs5), since they only deal with TBox and RBox axiom schemes.

Rules in HFC are universally-quantified implications (if-then rules), consisting
of a left-hand side (LHS, the body) and a right-hand side (RHS, the head). HFC is
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a bottom-up forward chainer (like Jena or OWLIM) that carries out (all possible)
inferences at compile time, so that querying information reduces to an indexing
problem at runtime. The process of making implicit information explicit is often
called materialization or computing the deductive closure of a set of ground atoms
w.r.t. a set of rules. The body and the head of a rule consist of a set of clauses,
interpreted conjunctively . In HFC, clause arguments are either constants (URIs
and XSD atoms) or variables. The rules make use of further LHS tests (@test)
which need to be fulfilled to successfully instantiate a RHS. Rules might also be
equipped with an action section (@action) that binds RHS-only variables to values
returned by functions.

4.3.1. rdf1

This is the only type statement that is not assigned a temporal extent, since once
?p has been recognized as a property, it is assumed that this is always the case.
Note that ?s and ?e are don’t-care variables not needed on the RHS.

?x ?p ?y ?s ?e

->

?p <rdf:type> <rdf:Property>

4.3.2. rdfs2

The next rule assigns a type to a URI in domain position. The starting and ending
time is taken over from the original relation instance, representing the given safe
temporal information.

?x ?p ?y ?s ?e

?p <rdfs:domain> ?dom

->

?x <rdf:type> ?dom ?s ?e

Next comes the more interesting part. Up to now, RDFS rules have been
extended by only moving around starting/ending information to positions in the
consequent of a rule. The two OWL rules below make use of lightweight tests and
aggregates.

4.3.3. rdfp1a and rdfp1b

We have complemented the original rule rdfp1 dealing with object properties by a
new rule that also addresses datatype properties. Let us start with the assumption
that the object is either a URI or a blank node, exactly what the original rule
encodes in its where condition:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:ObjectProperty>

?x ?p ?y ?s1 ?e1

?x ?p ?z ?s2 ?e2

->

?y <owl:sameAs> ?z

@test

IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2
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The IntersectionNotEmpty predicate in the test section (@test) guarantees that
we only identify ?y and ?z on the RHS in case the temporal extent of p(x, y) and
p(x, z) has a non-empty intersection:

IntersectionNotEmpty start1 end1 start2 end2 ≡
start := max(start1, start2)
end := min(end1, end2)

return (start ≤ end)

Thus a single overlapping observation leads to a total identification of ?y and
?z (at all times!), so the sameAs statement need not be equipped with temporal
information. Even though our (my!) commonsense indicates that this is the right
choice, the decision is, in principle, debatable.
If both observations, however, do talk about different non-intersecting times,
it makes perfect sense that ?y and ?z need not be equal, even though ?p is a
functional property (good example: marriedWith relation).

Let us now focus on the second rule rdfp1b, dealing with functional datatype
properties.

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:DatatypeProperty>

?x ?p ?y ?s1 ?e1

?x ?p ?z ?s2 ?e2

->

?x <rdf:type> <owl:Nothing> ?s ?e

@test

?y != ?z

IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2

@action

?s = Max2 ?s1 ?s2

?e = Min2 ?e1 ?e2

If two non-identical atoms are defined on a property, the above rule signals a
problem by assigning the bottom type owl:Nothing to the URI in the first place
of the tuple. Since p(x, y, s1, e1) and p(x, z, s2, e2) come with a duration, the type
assignment to ?x only holds for the intersection of the two intervals [s1, e1] and
[s2, e2], computed by Max2 and Min2.

4.4. Theoretical Results: Complexity, Soundness, and Completeness

Hayes [2] and ter Horst [7] have presented a set of so-called entailment (or infer-
ence) rules for RDF/RDFS and a subset of OWL that does not fully cover OWL
Lite, but at the same time implements parts of OWL DL. Given the original rules,
ter Horst has shown that entailment for RDFS is decidable and NP-complete
(and even in P if the RDF target graph does not contain any blank nodes). ter
Horst has also proved that the incompleteness of the system presented in [2] can
be corrected, and that the addition of OWL rules does not change the original
complexity results.

We have extended the two rule sets for RDFS and OWL by temporal infor-
mation, associated with an RDF triple and implemented through additional argu-
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ments. These arguments (fourth and fifth position in a quintuple) do not “inter-
fere” with the arguments in first, second, and third position. Moreover, the tem-
poral arguments are atoms (integers) which do not have an “internal structure”
(unlike URIs) that needs to be considered or that is shared with other tuples in
subject, predicate, or object position. By inspecting the 30 extended rules, time
can only act in four ways:

1. temporal information in a LHS clause is neither taken into account in other
LHS clauses, nor on the RHS; example: variables ?s and ?e in rule rdf1;

2. temporal information is transported from a LHS clause to a RHS clause;
example: variables ?s and ?e in rule rdfs2;

3. temporal information is compared by the four-place predicate Inter-

sectionNotEmpty, involving a ≤ comparison and the min and max aggre-
gates; example: ?s1, ?e1, ?s2, and ?e2 in rule rdfp1a;

4. temporal information on the RHS is conditioned by the input to the two
aggregates Max2 and Min2; example: ?s and ?e in rule rdfp1b.

The important point now is that all four rule cases do not produce any new
individuals (neither atoms, URIs, nor blank nodes). Even the two aggregates only
“pick out” one of their input arguments (contrary to SUM in SQL, for instance).
Thus the proposed extension is still function-free and the additional two argu-
ments do not add a further theoretical complexity. In a triple-based setting (see
rule below), this is no longer the case, since new container objects (usually blank
nodes) need to be generated, bearing the potential of non-termination.

Concerning runtime, the predicate IntersectionNotEmpty, and the two aggre-
gates Min2 and Max2 have a constant time and space complexity, thus the original
complexity results of the non-temporal case do hold here as well. The only differ-
ence comes from the replacement of the RDF triple by a quintuple (two additional
arguments).

As indicated in the beginning, the set of extended rules is not complete in that
p(x, y, s′, t′) can not be derived from p(x, y, s, t), assuming s ≤ s′ ≤ t′ ≤ t. If we
would allow such a completion rule, the computation of the deductive closure is
no longer terminating. Such information, however, can (and should) be obtained
through ABox queries.

As rule rdfp1b shows, inconsistency is expressed by assigning the bottom
type owl:Nothing to individuals. In order to make the rule system sound , two
additional rules must be added, addressing a combination of owl:sameAs and
owl:differentFrom, as well as owl:disjointWith together with two rdf:type state-
ments.

4.5. Extended Entailment Rules Using Triples

Due to space limitations, we will only depict a single temporal entailment rule,
viz., rdfp1b, showing the worst case that happens when adding time, using the
triple-based N-ary relation encoding:

?p <rdf:type> <owl:FunctionalProperty>

?p <rdf:type> <owl:DatatypeProperty>

?x ?p ?blank1
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?blank1 <nary:value> ?y

?blank1 <nary:starts> ?start1

?blank1 <nary:ends> ?end1

?x ?p ?blank2

?blank2 <nary:value> ?z

?blank2 <nary:starts> ?start2

?blank2 <nary:ends> ?end2

->

?x <rdf:type> ?new

?new <rdf:type> <nary:RangePlusTime>

?new <nary:value> <owl:Nothing>

?new <nary:starts> ?start

?new <nary:ends> ?end

@test

?y != ?z

IntersectionNotEmpty ?start1 ?end1 ?start2 ?end2

@action

?start = Max2 ?start1 ?start2

?end = Min2 ?end1 ?end2

?new = MakeUri <owl:Nothing> ?start ?end

This version is much more complex than the quintuple-based version shown be-
fore. The original range arguments bound to ?y and ?z are hidden in two nodes,
together with their temporal extent. rdfp1b requires 10 LHS clauses to express the
equivalent matching conditions (quintuple encoding: 4 clauses). It utilizes 5 RHS
clauses for the representation of the entailed relational fluent (quintuple encoding:
1 clause). Finally, this triple-based rule introduce a brand-new individual (a URI)
bound to ?new in an additional RHS action that is deterministically constructed
via MakeUri from its input arguments <owl:Nothing>, ?start, and ?end.

It is worth noting that the generation of new individuals, esp., blank nodes,
bear the potential of a non-terminating deductive closure computation. For this
reason, ?new is not bound to a blank node, but to a URI, whose name does not
change, assuming the input arguments to MakeUri are the same. In OWLIM, for
instance, such a URI generation is not available, although RHS-only variables
can be used in rules, always leading to the introduction of (brand new) blank
nodes. Now, in case a rule is applied several times to the same input data, several
(different) blank nodes will be generated, encoding equivalent data. In the worst
case during a fixpoint computation, such blank nodes lead to an explosion of
the RDF repository. The MakeUri action in the triple-based version of rdfp1b,
however, at least guarantees that such cases will not happen here, although we
opt for the quintuple-based encoding, as explained above that does not introduce
new individuals at all.

5. Measurements

In order to compare the two approaches on a practical level, we need a reasoner
that is able to directly encode arbitrary n-ary relations. Popular engines, such as
RACER, Pellet, Jena or OWLIM which are geared towards binary relations/RDF
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triples can not be applied here. Furthermore, and very important, practical rea-
soning with extended relation instances need some lightweight reasoning capabil-
ities (e.g., aggregates such as min and max ) which are only available in Jena. Un-
fortunately, Jena is not able to materialize even drastically-smaller triple-based
ontologies than those we have used here, even not for the original non-temporal
entailment rules. As already mentioned, the experiments below were performed
using HFC, a forward chainer we have developed over the last years.

5.1. Initial Numbers

The numbers below are computed against the mid-size ontology that backs up the
LT-World language portal (see http://www.lt-world.org). The measurements are
obtained on a 64bit Intel Core i7 (2.8 GHz), using Java 1.6. The unexpanded ABox
consists of 204,959 RDF triples. Fully materialized, 548,132 triples are obtained.
When setting up HFC with four processor cores (4 entailment rules always run in
parallel, if possible), the materialization terminates in 7.7 seconds after 7 iteration
steps, taking 716MB main memory (32bit Java approx. 360MB RAM).

Since temporal information is missing in the original data set, we randomly
attach a temporal starting and ending point to every ABox relation instance,
using XSD int atoms which we let vary between 0 and 1,000. This synthetical
data set, called Q1.00, is the starting point for the measurements.

From Q1.00, we produced smaller subsets (three quarters, two quarters, one
quarter) of the statements, called Q0.75, Q0.50, and Q0.25. Each quintuple set
was then transformed into a semantic-preserving set of triples, using the N-ary
relations encoding from section 3.2 (T1.00, T0.75, T0.50, T0.25). This is depicted
in Figure 1. We also generated a second quintuple set Q1.00’ from the original
data with different starting and ending values. Q1.00 together with Q1.00’ gave
us a new set Q2.00, doubled in size.

Figure 1. Scheme for constructing the quintuple- and triple-based test sets.

The measurements below use the extended quintuple rules (see section 4.3) to
materialize the implicit information contained in the Qx.yy data sets, whereas the
triple-based N-ary rules (section 4.5) are applied to the Tx.yy data sets. Without
materialization, we obtain the following “offline” numbers:
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#tuples file size [MB] load time [sec]

Q2.00 409,920 45.9 3.35

Q1.00 204,960 22.9 1.91
Q0.75 153,720 17.2 1.47
Q0.50 102,480 11.4 1.04
Q0.25 51,240 5.7 0.61

T1.00 1,024,795 50.8 3.89
T0.75 768,600 38.0 3.12
T0.50 512,400 25.1 2.16
T0.25 256,200 12.5 1.22

Next come the interesting facts. During materialization, all 30 rules of the ex-
tended entailment sets are applied over and over again to the information entailed
so far, until a fixpoint is reached, i.e., until no further information is obtained.
The differences between the quintuple-based and the triple-based approach are
quite drastic as the following “online” numbers show:

closure [sec] memory [GB] #iterations #tuples

Q2.00 361.3 6.92 23 6,805,359

Q1.00 101.5 3.35 19 2,542,619
Q0.75 4.3 0.62 7 382,110
Q0.50 2.1 0.49 7 151,678
Q0.25 0.9 0.25 3 59,652

T1.00 ——1 ——2 ——3 ——4

T0.75 236.8 4.44 8 1,844,341
T0.50 26.8 1.49 7 748,532
T0.25 3.1 0.64 3 296,970

Figure 2. Runtime numbers for semantically equivalent quintuple and triple sets of varying
size. By defining Δx.yz = closure(Tx.yz)/closure(Qx.yz), we get a feeling how much faster the
quintuple-based approach is when the ABox grows by a constant amount: Δ0.25 = 3.45, Δ0.50
= 12.76, Δ0.75 = 55.07, Δ1.00 = “∞”.

The table shows that some of the relational fluents in Q1.00\Q0.75, and so in
T1.00\T0.75, lead to a combinatorial explosion during the closure computation
from which the triple-based encoding does not recover. Even on a larger machine
with 64GB main memory, we were not able to reach a fixpoint for T1.00. Inter-
estingly, the step from Q1.00 to Q2.00 which we have expected to yield a larger
combinatorics, was quite easy for the quintuple-based approach. Clearly, the su-
periority of the quintuple-based approach not only comes from the smaller set of
initial tuples, but is also related to the complexity of the rules from the different
entailment rule sets (see next subsection for an explanation). Both sets consist of
30 rules, but the number of LHS and RHS clauses differ by a factor of 2–3:

#LHS clauses #RHS clauses

quintuples 73 32
N-ary relations 143 91

1Closure computation stopped after 11 minutes.
215 GB of main memory was exceeded then.
3Iteration 3 was “nearly” finished.
4Approximately 8 million triples were computed so far.
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In addition, 15 rules in the triple-based setting generate new individuals when
the LHS match is successful (see remark at the end of section 4.5). We finally
note here that the dramatic difference between the two approaches carry over to
queries that are posted online to a triple-/quintuple-based repository.

5.2. Discussion of Results

2 has presented runtime numbers for the two approaches against two se-
mantically equivalent data sets. As noted above, we were not able to complete the
closure computation for T1.00 with 64GB of RAM, even though the completion
of Q1.00/Q2.00 only required 3.35/6.92GB.

The deeper reason why things becoming such nasty is related to the last ta-
ble and the comments directly above, viz., the number of LHS and RHS clauses
of a rule. Since variable bindings within individual rule clauses are actually ta-
bles, computing a binding for all LHS variables of a rule effectively reduces to
a natural join ��, known from data base theory. Let us consider the quintuple-
and triple-based version of rule rdfp1b from above to explain the measurements.
Both variants come up with an identical first and second clause. However then,
things drastically diverge: the quintuple-based version performs two further natu-
ral joins (3rd+4th clause), whereas the triple-based version requires eight of them.
Of course, the triple-based tables are smaller and one can rearrange clauses in a
rule (which is done in HFC), but this advantage is eaten up in the end.

To make this even more clear, let us consider S �� T of two tables S and T ,
and assume that each table has five columns and has resulted from matching (?x1
?p1 ?y1 ?s1 ?e1) and (?x2 ?p2 ?y2 ?s2 ?e2) against the data base (the ABox).
Since variables in the first and second pattern are disjoint, �� reduces to a cross
join ×, resulting in the Cartesian product. This worst case will probably never
show up, but S × T results in a table of |S|2 10-tuples, since |S| = |T |.

Triple-based N-ary relation matching instead would require nine natural joins
(instead of one), some of them cross joins for (?x1 ?p1 ?b1), (?b1 <nary:value>

?y1), ..., (?b2 <nary:end> ?e2)—remember, the two quintuples are replaced by
ten triples; see subsection 3.2. In the end, this results in a table of 12-tuples (12
columns), where even the cross join between (?x1 ?p1 ?b1) and (?x2 ?p2 ?b2)
alone “supplies” 25 · |S|2 (= 5 · |S| · 5 · |S|) rows of the resulting table.

Further natural joins might even worsen the situation. Thus, LHS rule match-
ing in a triple-based settings always results in larger, sometimes drastically-larger
tables. As can be seen from the two versions of rdfp1b, RHS instantiation then
makes things even more worse during each iteration within the computation of
the deductive closure, since each newly entailed quintuple is represented by five
triples, plus one new individual in the N-ary relations representation.

6. Summary and Further Remarks

We hope to have shown that a general tuple-based approach for representing
temporally-changing information on the Web is far superior to triple-based ap-
proaches. We are convinced that the time now is ripe to move towards this conser-
vative extension of the RDF data model. As we remarked at the beginning of sec-

Figure
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tion 4, TBox and RBox axioms of an ontology remain unchanged, thus standard
ontology editors such as Protégé can still be used here. Only populated ABox
data is extended by a temporal dimension, leading to the special set of temporal
entailment rules presented in this paper.

It is worth noting that the five triple-based approaches presented in section 2.3
are forced to introduce one (or even two) new individuals, usually blank nodes, to
encode a temporal extent or other information from the range of an N-ary relation
(N > 2). As explained in section 4.5, these new individuals bear the potential
that forward reasoning will no longer terminate. In case we abandon reasoning at
all and only query for explicitly represented information, new individuals that are
added clearly do no harm. However, if inferencing capabilities in a triple-based
setting are required, the introduction of blank nodes can often be replaced by the
deterministic construction of URI names from the information that is “associated”
with them, as section 4.5 has shown. This, however, requires that the reasoning
engine provides means to call external functions (such as MakeUri).

We note here again that the five approaches to temporal representation inval-
idate standard OWL reasoning, thus requiring to change the standard Hayes &
ter Horst entailment rules. As has been shown in sections 4.5 and 5.2, such rules
are extremely complex, inefficient, and error-prone when written down (and the
same applies to online queries). Contrary to this, a general tuple-based approach,
as presented here and implemented in HFC, is not plagued by these considerations
and is able to directly encode the relation arguments without hiding them in a
new object. Furthermore, only the quintuple-based approach does not change the
theoretical complexity of RDFS/OWL-Horst entailment reasoning (section 4.4).

Looking at all this from an epistemological (or should I say, personal) point
of view, we might speculate whether it is worth or “right” to directly encode
arguments or whether to introduce helper/container objects. The former approach
would require a strict sequence of arguments (some of them potentially undefined),
whereas the latter needs to introduce additional properties.
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