
Another look at data 

by GEORGE H. MEALY 
Computer Consultant 
Scituate, Massachusetts 

INTRODUCTION 
We do not, it seems, have a very clear and commonly 
agreed upon set of notions about data-either what 
they are, how they should be fed and cared for, or 
their relation to the design of programming languages 
and operating systems. This paper sketches a theory 
of data which may serve to clarify these questions. 
It is based on a number of old ideas and may, as a 
result, seem obvious. Be that as it may, some of these 
old ideas are not common currency in our field, either 
separately or in combination; it is hoped that rehashing 
them in a somewhat new form may prove to be at least 
suggestive." 

To begin on a philosophical plane, let us note 
that we usually behave as if there were three realms 
of interest in data processing: the real world itself, 
ideas about it existing in the minds of men, and sym­
bols on paper or some other storage medium. The lat­
ter realms are, in some sense, held to be models of 
the former. Thus, we might say that data are frag­
ments of a theory of the real world, and data process­
ing juggles representations of these fragments of 
theory. No one ever saw or pointed at the integer we 
call "five" - it is theoretical- but we have all seen 
various representations of it, such as: 

V (101)2 (5)8 5 O.5E01 
and we recognize them as all denoting the same thing, 
with perhaps different flavors. 

We could easily resurrect disputes in medieval phi­
losophy at this point! The issue is ontology, or the 
question of what exists. While a Platonist would claim 
that even universal concepts, such as redness, exist 
independently of whether anyone perceived them 
properly or at all, a conceptualist might claim that we 
perceive only ideas and they have no existence until 
they are perceived. No doubt, both of these gentle­
men would quarrel with what I have already said. My 
friend the nominalist, however, would permit me to 
entertain such notions, so long as I did not insist upon 
his treating them as anything but words. * Since it 
happens that the following does not depend on any 

particular ontology, we can avoid a quarrel by adopt­
ing the nominalist's position. 

Our plan of attack is to indicate the nature of 
the theory of relations, based on the example of gen­
ealogical data. This will lead immediately to formula­
tion of our notions about data in general, including 
rather precise definitions of concepts such as data 
structure, list processing, and representation. These 
notions are used in the second part of the paper as 
the basis for some remarks and suggestions concern­
ing language and system design. 

Toward a theory of data 

Relations 

To fix our ideas, consider the following example of 
genealogical data, taken from Reference 2: 

... SNOW ... 
4. HENRY (7) [Henry (6), David (5), Anthony (4), 
John (3-2), Nicholas (1)], b. 18 Sept., 1810; m. 13 
Dec., 1840, Susan Stoddard, dau. of John and 
Betsey (Stoddard) Lincoln. She was b. 21 Aug., 
1822, and d. 13 Sept., 1880. He d. 25 April, 1904. 
"Master mariner." Resided in house which he 
built on So. Main St. south of his father's. 

Ch., b. in Coh.,- " 
i. SON, 17 April, 1841; d. 6 May, 1841. 

ii. JAMES H., 28 June, 1842. 
iii. ANN FRANCES, 24 Aug., 1844; d. 5 July, 

1869, unm. 
iv. SUSAN ELIZABETH, 20 Oct., 1846; m. 1 

Jan., 1869, Leonard A. Giles, Troy, N.Y., 
She d. 25 April, 1827. 

v. RUTH NICHOLS, 29 June, 1848; m. 24 
Jan., 1892, James H. Nichols. 

vi. CHARLOTTE OTIS, 8 Nov., 1850; m. 5 
Mar., 1879, George W. Mealy, Troy, N.Y. 

·See W. V. Quine's essay "On What There Is" in Reference 1 for 
an interesting and frequently entertaining discussion of these 
points of view. 

525 

From the collection of the Computer History Museum (www.computerhistory.org)

Citation: G. H. Mealy, "Another Look at Data," AFIPS, pp. 525-534,
1967 Proceedings of the Fall Joint Computer Conference, 1967.

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1967.112 



526 Fall Joint Computer Conference, 1967 

vii. BENJAMIN LINCOLN, 2 Aug., 1853; 
d. 24 Jan., 1859. 

The above, of course, does not record more than a 
few facts concerning Henry(7) Snow, Jr.; we are 
already in the realm of symbols. The nominalist is 
equally prepared to be told that James H. Snow is a 
misprint or that he is alive today. Officially, the nomi­
nalist is under no illusions about data: A data base 
never records all of the facts about a group of en­
tities; a fact may be recorded with complete or lesser 
accuracy; and non-facts may be recorded with equal 
facility. 

It was, no doubt, the study of genealogical data 
that led to the invention of the theory of relations, 
which will lead in turn to our. notions about data in 
general. Informally, relations are simply a generaliza­
tion of family relationships, and genealogical data 
is one of the older instances of recorded data. 

We start with a set of individuals (or any other type 
of entity) and a second set, which mayor may not be 
the same set as the first. A relation is a correspond­
ence between members of the two sets. For instance, 
son-of, children-of, father-of, ancestor-of, sib-of, 
and the like are all relations, as are birth-date-of, 
occupation-of, age-of, residence-of,. marital-status-of, 
etc. The children-of relation, in the case of the Snows, 
is a correspondence between Henry (7) and his chil­
dren, Henry (6) and his, and so forth. To be somewhat 
more accurate, there are at least two possible children­
of relations; due to the possibility of remarriage, for 
instance, the set of children of a given.pair of spouses 
is not necessarily the same as the set of children 
of a given individual of that pair. This is to say that, 
in general, relations are correspondences between 
n-tuples from a set and m-tuples from some possibly 
different set. . 

Another manner of speaking about the same sub­
ject material is also in common use; we speak of some 
set of things, attributes of those things, and values of 
attributes. Attributes are the same as relations, being 
a correspondence between the things and the values 
(which may also be things). Still another manner of 
speaking is to use the term "map," as we shall do 
shortly. A final manner of speaking is to use the term 
"function"; in the theory of relations, this term is 
reserved for the special case of relations which are 
single-valued. 

The notion of attribute should be distinguished 
(as PL/I does not) from that of property. To say that 
something has a given property is to say that some at­
tribute of that something has a certain value. Thus, 
when I say that a house is red, I mean that the value 
of its color attribute is red, not that I intend to identify 
the house with the universal concept of redness. Prop-

erties may be combined using the usual logical connec­
tives to form new properties, unlike values. Thus, 
the tall, red house has a property not shared by the 
long, red house, except by accident. Its color attri­
bute has the value red and its height attribute has the 
value tall. PL/I would with more precision state that 
the variable X has the property FIXED BINARY 
DATA-TYPE; the data type is the attribute, and 
FIXED BINARY is its value, or part thereof, as 
we shall see. 

Before proceeding, it is worth noting that the gen­
ealogical example illustrates two types of relations 
which seem to be qualitatively different. On the one 
hand, we have the family relationships and, on the 
other hand, we have relations between individuals 
and elements of other sets, such as dates .. There are 
other relations which are more akin to family relation­
ships, such as the relations between people who live 
in the same dwelling or who work for the same organi­
zation. An organization chart also illustrates this 
type of relation, which we will call "structural." 

Data maps 

We have called data fragments of a theory of the 
real world. It is now time to examine the nature of that 
theory. Along the way, it will be possible to propose 
precise definitions for many terms which are nor­
mally used rather more loosely. We start with the 
(undefined) notion of a set and introduce the notion 
of a map more precisely than we did above. We will 
use standard notation from set theory: Sets will be 
represented by capital, Roman letters and elements 
of sets by lower case letters. If a is an element of the 
set A, we write 

aeA· 
If A is a subset of B (that is, all elements of A are also 
in B), we write 

A~B' 
Maps will be represented by Greek letters. In talking 
about a map of the set A into the set B (that is, the 
map makes values in B correspond to arguments in 
A), we will write 

or 
JL: A~ B 

JL 
A~B' 

The latter form is useful in diagrams displaying sev­
eral sets and maps. 

We require of a map that it assign to each element 
of A either nothing or one or more elements of B; 
some members of B may not be assigned to any ele­
ment of A. If every element of B is assigned to at 
least one element of A, we call the map "onto." If a 
unique element of B is assigned to each element of A, 

From the collection of the Computer History Museum (www.computerhistory.org)



the map is called "one-one." A one-one onto map 
pairs each element of A with a unique element of B 
and vice versa. 

We will write ordered n-tuples of set elements as a 
parenthesized list: 

(ah~'" ,an) 
In such an n-tuple, if each ai comes from a corre­
sponding set Ah then the set of all possible such n­
tuples is written as: 

A t XA2 X ... xAn 
If all of the sets Ai are the same set A, then the set 
of all n-tuples from A is written as: 

An 
The set of all subsets of a set A is usually symbolized 
as 

2A 
owing to the fact that there are exactly 2n possible 
subsets of a set of n elements. Figure 1 displays a 
two element set A together with the set of pairs of 
elements in A and the set of subsets of A. 

0 
\:) 

(a ,b) (b, a) (0 0 0 

(b,b) 
0 

(0,0) 
0 

Figure 1 - Sample sets 

Now data are supposed to record a set of facts' 
about some set of entities, be they real or abstract. 
In our present formal manner of speaking, we can 
contemplate a set of entities, E, a set of values, V, 
and a set D whose members are maps of the form: 

{}: E-+V 

Another Look at Data 527 

We will call D a set of "data maps". As we shall see 
later, D is a set whose elements are subsets of the set 
Ex V. That is, 

D ~ 2(EXV). 

In the case of the Snows, one of the data maps in 
D assigns to Henry(7) his birth date in the value set 
of dates. The same data map assigns a birth date to 
James H. Snow. The date-of-death data map assigns 
no death date to James (at least, not on the basis of 
the evidence quoted earlier); its value for him is 
undefined. The father-of map assigns Henry (6) to 
Henry (7), but its value for James H. Nichols is again 
undefined. In the case of this map, the value set V 
must contain E as a subset; we have an instance of a 
structural map, which we define as any map of the 
form: 

u: En-+Em 
for some non-negative nand m. This is, by our pre­
vious definition, a data map only if n = 1. 

The set of entities, E, might be larger than one might 
expect. For technical reasons, it is often convenient 
to introduce certain auxiliary entities. For instance, in 
the genealogical example, it might be appropriate to 
introduce entities corresponding to married couples 
as well as the entities representing individuals. Again, 
one normally wishes to record information that has 
no direct bearing on the entities the data are about, 
such a file name, retention date, etc. In this case, 
we merely augment the set E with a special element 
eo together with data maps defined only for eo· 

We have not inquired into the possible structure 
of the value set V, nor have we admitted all possible 
structural maps as candidates for the set of all pos­
sible data maps. The motivation for this is to simplify 
matters by considering only the structural data maps 

u: E-+ E 
and by restricting the data maps to be functions - that 
is, to have a single value for each argument. By ap­
propriate adjunction of additional elements to E and 
data maps to 0, this can always be done. 

V, itself, might be considered to be constructed 
from other sets. For instance, in the definition of 
data maps we have implicitly assumed that E is a sub­
set of V in order to admit structural data maps. The 
set composed of the element~ of V which are not ele-
ments of E, that is ' 

W=V-E, 
could have structure, however. It might be a set of 
ordered triples or something more complicated, such 
as a set of vectors whose elements are vectors, and 
so forth - in other words, a set of tree structures. 
On the contrary, we will insist upon explaining struc­
ture by using structural data maps, and it will then 
be the case that all data maps can be defined in terms 

From the collection of the Computer History Museum (www.computerhistory.org)



528 Fall Joint Computer Conference, 1967 

of a non-structural map T applied to a structural map 
a-. That is, if p- is an arbitrary data map, the situation 
shown in the following diagram can be made to obtain. 

E 

E 

p, 
----..,.~V 

___ 7_~.,W 

In the diagram, L is the identity map of W into V, ex­
pressing merely that W is a subset of V. The diagram 
expresses the fact that, starting with an element of 
E, one gets the same value by applying the map IL 
as by applying a-, T, and L in that order. 

Access functions 

We need a way of t",avelling around over the en­
tities, or locating them either relative to each other 
or from something roughly like names or addresses. 
This mechanism is provided by the notion of an access 
function, which will be any map whose value set is the 
set of entities or a subset thereof. Access functions 
are not necessarily structural data maps, as we shall 
see immediately. 

Certain special types of access functions fall out 
at once. Suppose we have a set K (for "key") and a 
map from K which is one-one into E; this is a direct 
access function, for we may regard K as a set of 
keys, addresses, or names of entities in E. On the 
other hand, suppose that we have a structural data 
map and some initial element of E, say eo; if each ap­
plication of the map gives us a new element of E, 
until the final application gives us nothing, then we 
say that the map is a sequential access function. It 
mimics the. behavior of the successor function of ele­
mentary nu~ber theory, except that E is finite rather 
than countably infinite. These two situations can 
be illustrated by the diagram: 

Note that we have not required that the maps be onto 
- a map into mayor may not be onto. A case in which 
the maps are not onto is given in the following dia­
gram: 

iJ a- a- a-
ko~eo~ eo' ------+ eo"~ 

iJ u 
kl ) el---4 e1 

,~ et" ~ ... 

• 
• 
• 

iJ a- a- a-
kn~ en~ en' ~ en"~ 

This is reminiscent of the indexed sequential access 
method of Operating System/J60. 

Data 

We have still not explained which of the objects 
above we mean to regard as data. The data maps them­
selves, or rather their elements, will be so considered, 
but this choice requires further justification. 

What happens when data are processed? Our naive 
notion is that values are used as arguments to the 
procedure and the result is that values get defined, 
redefined, or undefined, so that the value set V must 
be regarded as being the data. But, what if V is the 
set of integers? It certainly cannot be the case that 
data processing redefines the integers! Nor are the en­
tities changed, so we are left with the data maps. This 
notion may be a bit hard to stomach at first, but 
may be made more palatable by considering ways in 
which a map may be specified: 

• We may specify a test which decides whether 
or not the map actually assigns a given value to 
a given argument. 

• We may have a rule, or procedure (such as 
applying several maps in succession) which will 
designate the value, given the argument. 

• We may define the map by actually exhibiting 
the pairs of corresponding arguments and values. 

In the theory of relations, the third approach is usually 
used to define a relation - it is simply a set of ordered 
pairs. 

In our case, suppose that 
lL(e) = v 

This is the same as saying that the ordered pair (e,v) 
is a member of the set IL. To redefine the value of 
the data item (e,v) is to redefine IL by removing that 
pair from it and adding a new pair (e,v'). This justi­
fies our earlier statement that 

D k 2 ExV) 

Thus, data processing changes neithOer E nor V, as 
desired. 

From the collection of the Computer History Museum (www.computerhistory.org)



We have, incidentally, slipped in a definition of 
data item, which is an element of a data map. A data 
element will be the set of all data items associated 
with a given entity. List elements in IPL-V and 
LISP are data elements, in this sense. The notion 
of a logical record also corresponds to data element 
in our sense, and field corresponds roughly to our 
data item. 

This explanation of data processing may seem 
quite artificial, in view of our Platonistic feeling that 
the "right" rule for assigning the value of a data item 
should be independent of how we do our data process­
ing. My friend the nominalist would not be bothered 
by this scruple - he did not claim that such a thing 
as a "right" rule existed in the first place; data do 
not necessarily represent facts with utter accuracy. 
Data processing, he might say, is data's way of at­
tempting to adjust to the facts, if such there be. 

Procedures 

We have now noted the effect of a procedure-it 
redefines one or more data maps or, what is the same 
thing, changes the value part of certain data items. 
The effect on D is to map it into a new subset of the 
data maps. In other words, procedures are maps of 
the form 

Our idea about D is that it is the data at any given 
moment of time, not the data for all time. 

The import of our introduction of the auxiliary 
entities was to effect a clean separation of structural 
from other considerations. That is, we have set things 
up so that any data map can be decomposed into a 
structural data map followed by a non-structural data 
map. The structural data maps are maps of E into E, 
by definition. Our long-standing name for data items 
in such maps is "pointers." This, in turn, suggests 
an identification of list processing with procedures 
which process structural data. A list processing 
proceq.ure, hence, is any map of the form 

This is a precise version of our vague notion that list 
processing has something to do with pointers and data 
structures. 

Data storage and representation 

The foregoing model obviously can be taken to 
apply directly to physical storage media.3 To en­
tities correspond cells in storage (blocks, words, 

Another Look at Data 529 

characters, bits, registers,etc.). Maps specify attri­
butes of the storage cells (more properly, proper­
ties) such as content, structure, parity, ability to read 
and/or write, address, protection key, and the like. 
The structural maps and access functions clearly 
correspond to our more usual notions of storage 
structure and access. 

If our data maps are an abstract theory of the real 
world, we must do data processing with something 
else; computers are, after all, not abstract objects. 
However, the abstract theory is just as capable of 
modeling computation as it is of providing models of 
the real world-possibly even more so. We are con­
fronted, we might say, with three systems in any 
specific situation. Each such system is composed of a 
quadruple of entities, values, data maps, and pro­
cedures. The first system is, at least from a Platonist­
ic point of view, some part of the real world, the sec­
ond is our theory of the first, and the third is a ma­
chine representation of that theory. A representation 
is, itself, now defined as a map establishing a corre­
spondence between two systems. 

What criteria should a representation satisfy? Well, 
consider a system in the above sense: 

S=(E,V,D,P) 
where P is the set of procedures. Further, let 7T be 
any procedure in P, mapping D into a new set of data 
maps D, and let p be a representation map which 
maps S into S': 

p: (E,V,D,P)~(E',V',D',P') 

For any object in S, we wish the representation to 
assign a unique object in S', and vice versa. In other 
words, p should be one-one onto. However, we desire 
more than just this; in order to insure that anything 
happening in the one system also happens in the other, 
we require that the following diagram be commutative: 

P 
D ----~~ D' 

P D ---~) D' 

or, in other words, that: 
P7T=7T'p 

This criterion can fail in two ways: (1) obviously, 
when the map p is not one-one onto, and (2) when the 
procedure 7T', chosen in the belief that it corresponds 
to 7T, does not in fact so correspond. It might be 
thought that the second alternative can happen only 
by mistake, since we could presumably define the 

From the collection of the Computer History Museum (www.computerhistory.org)



530 Fall Joint Computer Conference, 1967 

procedure maps in terms of E and V and they are 
mapped into their primed counterparts in a one-one 
onto fashion. The rub is that, in practice, the first 
condition frequently does not obtain, and this gives 
rise to doubt as to which procedure 'TT' best repre­
sents an abstract computation 'TT. 

The reason p fails to be one-one onto, usually, is 
that the set V I is of a different size than the set V. 
The most obvious example is the case of machine 
representation of the real numbers; only rational 
numbers may be represented with complete accuracy 
on a machine (numerically, at least), and our com­
mon floating-scale representations are capable of 
representing only a finite number of rationals at 
that. * Moreover, the primitive operations out of which 
we compound procedures are only "best" representa­
tions of the abstract operations we have in mind. The 
size of the literature on floating-scale representations 
and arithmetic testifies to the amount of disagreement 
existing on what "best" means! 

In the case of a machine representation, we have 
an abstract system and a representation map mapping 
it into the machine system. In fact, we frequently 
employ more than one machine representation for 
certain data items (e.g., numeric data). On the other 
hand, there is the physical storage system, and the 
machine representation of the data and procedure 
maps must be mapped into the physical storage. The 
structural part of this mapping-that is, the cor­
respondence between the structure of the data and 
the structure of storage, we call the data organization. 
While this enables data access, it is not access. Ac­
cess is a feature of the processing of the data, not of 
the data itself or how it is represented; different pro­
cedures will, in general, want to access the same data 
in different ways and orders. The order in which data 
items are fetched and stored is (or should be) in­
dependent of the data organization; this notion was an 
important principle in the design of the data manage­
ment subsystem of Operating System/360. 

Data description 

What do we mean in general by the term "data 
description 1" We might be tempted to confine our 
attention to the theoretical realm and, like ALGOL, 
talk of real numbers, integers, dynamic own arrays, 
and the like, considering it the job of any represen­
tation to be faithful to our theory. To do so, however, 
would be to beg the question by ignoring descriptive 
information which we use every day, and in machine-

*Matula4 has studied the maps which convert a floating-scale 
number from one radix· to another. He shows that the map may 
be one-one or onto, but not both! 

processable form at that. For example, the COBOL 
Data Division contains information which we would 
call data description, such as field lengths, and these 
certainly describe the machine representation, albeit 
incompletely. Information describing a data set ap­
pears in the volume and data set labels, and still 
other information is used to compile the procedures. 
All of this information, and more, is data description, 
although not all of it is stored explicitly or even in 
one place, nor is it available at all times. Some of 
it exists only in the minds of men! 

So, I will be dogmatic: Data description describes 
machine data systems, representations, and organiza­
tions, rather than abstract data itself. That is, it is a 
specification of the maps, usually in terms of proce­
dures which will accomplish the mapping, and the 
salient characteristics of the entity and value sets. 
To describe a data aggregate-that is, a file or data 
set - we supply this information together with infor­
mation concerning the aggregate as a whole. 

The term "data type" has been used informally 
above, but not in any essential manner. Intuitively, 
we feel that the data type tells us what kind of data 
we are dealing with. Had we not discovered that data 
items must be regarded as being elements of data 
maps rather than elements of value sets, our first 
false start toward a definition of data type might be 
to regard it as an attribute of the value set. A mo­
ment's reflection, however, is enough to convince 
one that this is an untenable notion; a given bit pat­
tern may represent an element of anyone of a number 
of value sets (binary integer, floating hexadecimal 
number, character string, or something else). In fact, 
it is not unusual to treat the content of a given stor­
age cell as if it were of one data type at one point in 
a program and of another data type somewhere else. 

Our next theory about data type, then, might be that 
it is related to the kinds of procedure maps used to 
process the data items. We retreat to the abstract 
realm, and consider the data type as specifying the 
mathematical system which governs processing. We 
might then come out with the following generic data 
types: 

• String -free monoid on a finite number of 
tokens 

• Boolean - Boolean algebra (or, equivalently, 
ring) 

• Numeric-field (or more general system) 
• Pointer -directed linear graph 

This doesn't help very much. We distinguish between 
fixed binary and double precision complex floating 
decimal data, and this false start manages to keep us 
from making distinctions of practical importance by 
preventing us from talking about representation. 

From the collection of the Computer History Museum (www.computerhistory.org)



Nevertheless, the above are not irrelevant to data 
type; they are merely incomplete definitions. We are 
forced to conclude that a data type is a fragment of 
data description and, as such, describes a portion of a 
system and its associated representation and organi­
zation maps. It is an attribute of entities. We can tie 
the notion down better by looking at further determi­
nants of data type for each of the generic data types 
mentioned above: 

String 

• Code-the code for each token (character, bit, 
etc.). E.g., USASCII, EBCDIC and the like. 

• E.g., USASCII, EBCDIC and the like. 
• String length - fixed or variable, and value of 

length attribute. 
• Justification-left or right, and padding token. 

Boolean: 

• Code - the code for each truth value (or n-tuple). 
• Field length. 

Pointer: 

• Code - machine address, base and displacement, 
item number in table, etc. 

• Code for null pointer. 

Numeric: 
• Code - digit code, radix or weights, excess. 
• Sign treatment - unsigned, sign and magnitude, 

radix or radix minus one complement. 
• Scale - fixed or floating, value of scale. 
• Rounded or truncated calculation. 
• Arithmetic algorithms. 
• Numeric limit(s) on value. 
• Field length, or precision. 
• Aligned or packed (storage mapping restriction). 

It is evident that a complete description of a given 
data type contains information concerning represen­
tation of elements of the value set; information stating 
which representation, procedure, and organization 
maps are applicable; and data to be used in any 
mapping (such as value of scale). It is further evident 
that two entities which are not identical in all of these 
respects should not be regarded as having the same 
data type, unless the variable information is stored as 
data to be used interpretatively in accomplishing any 
of the mappings. Thus, variables of type real in AL­
GOL must be regarded as having different data 
types as represented, say, on the IBM System/360 
and the CDC 6600. 

Thus far, we have not discussed structural data. We 
even seem to have done a bit of violence to the notion 

Another Look at Data 531 

of separation of structural from other data, but this is 
easily fixed. For instance, consider a floating-scale 
entity. Both the mantissa and the characteristic must 
be available during calculation, and they are treated 
as one entity during floating-scale arithmetic but as 
two entities during radix conversion. To be completely 
consistent, for each floating-scale entity we should 
introduce two more auxiliary entities; each of these is 
a fixed scale number and can be described appropri­
ately. Similarly, we can take care of complex and 
multiple precision entities. 

Turning to purely structural data, it is clear that we 
can invent data types, such as arrays, lists, tables, 
ring structures, etc., for any sort of structure worth 
classifying. In practice, of course, we suppress 
most of the detail involving the auxiliary entities and 
write down descriptions like: 

DECLARE A(3,3) FIXED BINARY (15); 
to describe a three-by-three array of 15 bit fixed-scale 
binary integers. 

Languages and systems 

On the basis of the point of view about data ad­
vocated earlier, more light can be shed on several 
issues of current interest. In some sense, these 
issues are all related to the possibilities of flexibility 
in choice of machine (machine independence), choice 
of data representation (ability to define new data 
types), or ability to strike a balance between compila­
tion and interpretation (variable binding time). 

Representation independence 

For some years now, one of the more persuasive 
arguments in the favor of narrative languages such as 
ALGOL, COBOL, FORTRAN, JOVIAL, NEL­
LIAC, and PL/I has been that they have ~ffered 
some measure of machine independence. That is, the 
user is offered a greater or lesser degree of hope that 
a program written in a particular language together 
with data processed by the program can be processed 
on a variety of computing systems, with something 
like the same results. 

Independent of one's personal degree of confidence 
in fulfillment of such an objective (and most of us 
believe that the objective is a Good Thing), I would 
urge adoption of the term "representation inde­
pendence" as being more appropriate than the term 
"machine independence." In espousing such an ob­
jective, one's philosophical point of view might be 
that data processing takes place in the abstract realm 
in which our theory of data is formulated. It is, follow­
ing this line of thought, more or less an accident 
(economic issues and questions of accuracy aside) 

From the collection of the Computer History Museum (www.computerhistory.org)



532 Fall Joint Computer Conference, 1967 

which computing system and machine representations 
are chosen in order to do the actual processing, and 
all such choices should lead to the same results. * In 
principle, I cannot quarrel with such a view; in prac­
tice, I wonder if blind pursuit of the objective does not 
often result in prejudgment of the economic issue. I 
hasten to add, however, that most programmers tend 
to be too pragmatic - in the long run, generality often 
costs less than specificity. 

Representation independence is a more stringent 
objective than is machine independence. Represen­
tations are equivalent only when the representation 
maps are one-one onto and commute with the pro­
cedures, as we have seen, and there are cases in which 
this simply cannot be achieved in practice. Even in 
cases where one can choose a representation which 
satisfies our criterion, the cost may be unacceptable 
and we are forced to make do with a "best" repre­
sentation. This should be counted as no disaster; it 
simply means that in practice we must relax the 
criteria of representation independence sufficiently 
to stay within optimal bounds of accuracy and eco­
nomic data processing. Paradoxically, the best way 
to follow the spirit of our objective is to recognize 
that we can't live up to the law in all cases. 

Our Platonistic tendencies have led us, in the past, 
to attempt to banish considerations of representation 
from language design and usage. I would suggest,con­
trariwise, that any serious attempt to design languages 
which are significantly more representation independ­
ent that at present is doomed to failure unless the 
notion of representation is made part of the language, 
ungrudgingly. At that point, we are again faced with 
the issue of how cleanly we can separate specification 
of the algorithm from specification of the data repre­
sentation. Possibly, this introduces a new version of 
the UNCaL controversy! To overstate the case, the 
notion behind UNCaL was that one could pump a 
language description into one end of a compiler, a 
machine description into the other end, and come out 
with quality compilations. While many would still 
like to believe this, the evidence is that the two 
descriptions cannot be separated that cleanly. What 
I am suggesting, however, is counter to separatist 
sentiment - I claim that we should see what happens 
if we let the programmer talk about both procedure 
and representation. 

PL/I is the latest language design to attempt sup­
pression of representation. Yet, UNSPEC finally 
made its appearance. For a purist, the use of UN­
SPEC is as unacceptable as in-line machine language 

*This is not my own point of view, needless to say. However, the 
notion of representation independence makes sense whatever one's 
philosophical bias. ' 

coding. Why, then, did UNSPEC slip in? The reason, 
I suspect, was two-fold: (1) to allow use of data types 
not already defined in the language, and (2) to allow a 
given storage cell content to be treated according to 
one data description at one point in a procedure and 
according to another somewhere else. It seems to me 
that the attempt to banish representation considera­
tions from language design has, in this case at least, 
led inevitably to their sneaking in the back door in a 
quite unpalatable form. 

The dilemmas posed by representation independ­
ence, UNSPEC, and the CELL construction in 
PL/I are unfortunate inheritances from past history, 
.earlier forms of which occurred in FORTRAN. They 
resulted from our inherited belief that symbols are 
names of storage locations rather than names of en­
tities assigned to them by the data organization. The 
crux of the situation is this: The programmer wishes to 
be representation independent to the extent that con­
siderations of accuracy and economics allow. On the 
other hand, in some cases, he is definitely concerned 
with specific representations - for instance, in speci­
fication of procedures which convert data from one 
representation to another. To be so doctrinaire in 
language design as to insist on complete representa­
tion independence is to cut off one's nose to spite 
one's face. The language feature needed in the specific 
case at hand is the ability to say "I have a value for 
data item A in storage, and I now wish to use that as 
the value for data item B, which has a different data 
type. Furthermore, no matter how complex the struc­
ture and data organization for A and B, I know that 
-the bit patterns for the two values are identical (I 
just told you so), so don't bug me about representa­
tion independence." In other words, the programmer 
must be allowed to pay his money and take his choice. 

Language extension 

PL/I has been lambasted both for having too many 
and for having too few data types available. The 
former point is made by many who have been unfavor­
ably impressed by the sheer size of the code required 
in PL/I compilers, although this might with more 
justice be blamed on the amount of automatic data 
conversion required. The latter point is made by those 
who wish to handle data of more complex structure 
with less circumlocution. The suggestion has been 
made in many quarters that what we really need is 
fewer data types along with apparatus which will 
allow the user to define his own. I find myself in this 
camp, although I don't believe that the problem is by 
any means as trivial as is sometimes claimed. 

Part of the problem, of course, lies in adopting a 
consistent view of what data are and finding suitable 

From the collection of the Computer History Museum (www.computerhistory.org)



methods for writing and storing data descriptions 
(including both representation and organization). The 
theory of data advanced above seems potentially 
adequate for these purposes; what is not so clear is 
how to link the data description apparatus to the code 
generation and optimization apparatus of the compiler. 
Galler and Perlis5 have done some interesting work in 
this area. 

Variable binding time 

How much of the data description is stored explic­
itly, and where, is partially a matter of taste. It is 
largely determined by the language, language proces­
sor, and operating system one is working with at 
present. Classically, we have tended to use the data 
description at compile time and then throw it away. 
Moreover, much of the data description has been iin­
plicit in the compiler's structure; the programmer has 
had little explicit control. List processin,g is an inter­
mediate case - processing variable data structures 
must be done interpretatively, even though the code 
for other processing can be compiled out. At the other 
extreme, interpretative operation tends to use the data 
description at execute time, over and over ,again. In 
the former case, the bet is that the program will not be 
recompiled too often and the data description will not 
have to change during execution, nor will the data 
structures. In the latter case, the bet is that less over­
head will occur through interpretation than would be 
incurred by frequent massive compilations. Conversa­
tional processing tends in the latter direction. 

But, in the case of all systems that have been de­
signed thus far, the choice of binding time is pretty 
much cast into concrete by the system ,and language 
processor design, even though it' is hard to believe 
that the choice can possibly be appropriate for all 
tasks. We should, I believe, seriously investigate the 
possibility of system designs that allow the individual 
user to make his own judgment of the proper tradeoff. 
This would necessitate explicit storage of data de­
scriptions -:- a few systems have' allowed this, ~otably 
the CL-I and CL-II systems.6 

SUMMARY 

In the first part of the paper, we have proposed a 
theoretical model for data and data processing. The 
model is a system of sets of entities, values, data 
maps, and procedure maps. The entities correspond to 
the objects in the real world about which data are 
recorded or computed. The data maps assign values to 
attributes of the entities; these maps are regarded as 
being sets of ordered pairs of entities and values, or 
data items. Structural data is a special type of data 

Another Look at Data 533 

map where the value set is the set of entities itself; 
structural maps are composed of pointers. By intro­
ducing structural data maps and auxiliary entities, we 
can explain any data map as being composed of a 
structural data map followed by a map whose value is 
a quantity with as simple structure as we wish (for 
example, an integer). Procedures are operations on 
the data maps, producing new (or redefined) data 
maps. List processing procedures operate on struc­
tural data maps, or sets of pointers. 

Data processing occurs in the machine realm, 
operating on objects which are mapped into the 
storage facilities of the computing system. We re­
quire, ideally, that such a system be a representation 
of the real or abstract system being modelled; this 
means that the representation map is one-one onto 
as regards the entities, values, data maps, and pro­
cedure maps and, further, that the representation map 
commutes with the procedure maps. 

Access functions are maps whose ,values are en­
tities; they are used by procedures to get access to 
the entities, and hence to the data. Access functions 
may involve use of structural data, but are principally 
a feature of the individual procedure. Data organi­
zation, on the other hand, is the way the structure of 
the data.is mapped into the structure of the storage 
media. 

Data description is a specification of machine data 
systems and representations; a data, type is a frag­
ment of data description, describing an entity and 'its 
applicable maps. 

The first part of the paper, then, was a discussion of 
the nature of data and the relation between what it is 
and what.we do with it. In t~e second part of the paper, 
these notIons were used as a framework for discussing 
several issues of current interest. 

The notion of machine independence, apart from 
its roots in practical needs, proceeds from the point 
of view that data processing takes place in the abstract 
realm and, hence, its results should be representation 
independent. This is an attainable goal only when our 
criterion for a representation can be satisfied eco­
nomically. However, language design has tended to 
suppress the notion of representation to the extent 
that the programmer frequently cannot talk about it. 
I regard this as being a mistaken approach toward our 
practical goals; on the contrary, significant progress 
toward representation independence of -results can 
only be made by making the notion of representation 
much more explicit in language designs than it is at 
present. 

A second argument for emphasizing the role of data 
description in language design is related to the issue 
of language extension. A trend in language develop-

From the collection of the Computer History Museum (www.computerhistory.org)



534 Fall Joint Computer Conference, 1967 

ment has been to expand the number of data types 
available to the programmer, at the expense of signif­
icant increases in compiler size and complexity, 
and without satisfying those who have a genuine need 
to use data types over and above those already avail­
. able in a given language. The way out of this dilemma 
appears to lie in the design of languages with a limited 
number of data types (perhaps only one instance of 
each of the four generic types mentioned earlier) 
together with facilities enabling the user to introduce 
arbitrary data type definitions as heeded. 

Finally, it was argued that language and system 
design should make increased use of stored, explicit 
data descriptions. This will serve two purposes: 
First, it is a prerequisite for the design of systems 
which allow the user to strike his own economic 
balance between compilation and interpretation. 
Second, the extent to which current system designs 
achieve the goal of independence of procedure speci­
fication from data representation is due to the use 
of stored descriptive information, together with in­
terpretation of the description, be it at compilation, 
execution, or some other time. Standardization of 

methods of data description may ultimately prove to 
be much more important than standardization of meth­
ods of data representation and procedure specifica­
tion. 

REFERENCES 

W V QUINE 
From a logical point of view 
Harvard University Press Cambridge 1953 

2 G L DAVENPORT E 0 DAVENPORT 
The genealogies of the families of Cohasset, Massachusetts 
Stanhope Press Boston 1909 

3, A W HOLT 
Proceedings oflFIP Congress 1965 
Spartan Books Inc Washington DC 1966 

4 D W MATULA 
Base conversion mappings 
AFIPS Conference Proceedings, Spring Joint Computer 
Conference vol30 pp 311-318 1967 

5 B A GALLER A J PERLIS 
A proposal for definitions in A LG 0 L 
Comm ACM 10204 1967 

6 T E CHEATHAM,JR. 
Data description in the C L-II programming system 
Digest of Technical Papers National Conference Association 
for Computing Machinery 1962 

From the collection of the Computer History Museum (www.computerhistory.org)




